Handbook of Environmental Fluid Dynamics, Volume One


Book Description

With major implications for applied physics, engineering, and the natural and social sciences, the rapidly growing area of environmental fluid dynamics focuses on the interactions of human activities, environment, and fluid motion. A landmark for the field, the two-volume Handbook of Environmental Fluid Dynamics presents the basic principles, fundamental flow processes, modeling techniques, and measurement methods used in the study of environmental motions. It also offers critical discussions of environmental sustainability related to engineering. The handbook features 81 chapters written by 135 renowned researchers from around the world. Covering environmental, policy, biological, and chemical aspects, it tackles important cross-disciplinary topics such as sustainability, ecology, pollution, micrometeorology, and limnology. Volume One: Overview and Fundamentals provides a comprehensive overview of the basic principles. It starts with general topics that emphasize the relevance of environmental fluid dynamics research in society, public policy, infrastructure, quality of life, security, and the law. It then discusses established and emerging focus areas. The volume also examines the sub-mesoscale flow processes and phenomena that form the building blocks of environmental motions, with emphasis on turbulent motions and their role in heat, momentum, and species transport. As communities face existential challenges posed by climate change, rapid urbanization, and scarcity of water and energy, the study of environmental fluid dynamics becomes increasingly relevant. This volume is a valuable resource for students, researchers, and policymakers working to better understand the fundamentals of environmental motions and how they affect and are influenced by anthropogenic activities. See also Handbook of Environmental Fluid Dynamics, Two-Volume Set and Volume Two: Systems, Pollution, Modeling, and Measurements.




Handbook of Environmental Fluid Dynamics, Two-Volume Set


Book Description

With major implications for applied physics, engineering, and the natural and social sciences, the rapidly growing area of environmental fluid dynamics focuses on the interactions of human activities, environment, and fluid motion. A landmark for the field, this two-volume handbook presents the basic principles, fundamental flow processes, modeling techniques, and measurement methods used in the field, along with critical discussions of environmental sustainability related to engineering aspects. The first volume provides a comprehensive overview of the fundamentals, and the second volume explores the interactions between engineered structures and natural flows.




Handbook of Environmental Fluid Dynamics, Volume Two


Book Description

With major implications for applied physics, engineering, and the natural and social sciences, the rapidly growing area of environmental fluid dynamics focuses on the interactions of human activities, environment, and fluid motion. A landmark for the field, the two-volume Handbook of Environmental Fluid Dynamics presents the basic principles, fundamental flow processes, modeling techniques, and measurement methods used in the study of environmental motions. It also offers critical discussions of environmental sustainability related to engineering. The handbook features 81 chapters written by 135 renowned researchers from around the world. Covering environmental, policy, biological, and chemical aspects, it tackles important cross-disciplinary topics such as sustainability, ecology, pollution, micrometeorology, and limnology. Volume Two: Systems, Pollution, Modeling, and Measurements explores the interactions between engineered structures and anthropogenic activities that affect natural flows, with particular emphasis on environmental pollution. The book covers the numerical methodologies that underpin research, predictive modeling, and cyber-infrastructure developments. It also addresses practical aspects of laboratory experiments and field observations that validate quantitative predictions and help identify new phenomena and processes. As communities face existential challenges posed by climate change, rapid urbanization, and scarcity of water and energy, the study of environmental fluid dynamics becomes increasingly relevant. This volume is a valuable resource for students, researchers, and policymakers working to better understand environmental motions and how they affect and are influenced by anthropogenic activities. See also Handbook of Environmental Fluid Dynamics, Two-Volume Set and Volume One: Overview and Fundamentals.







Handbook of Environmental Fluid Dynamics Volume One


Book Description

The Handbook of Environmental Fluid Dynamics presents the basic principles, fundamental flow processes, modeling techniques, and measurement methods used in the field, along with critical discussions of environmental sustainability related to engineering aspects. This first volume emphasizes the close relevance of environmental fluid dy




Handbook of Fluid Dynamics


Book Description

Handbook of Fluid Dynamics offers balanced coverage of the three traditional areas of fluid dynamics—theoretical, computational, and experimental—complete with valuable appendices presenting the mathematics of fluid dynamics, tables of dimensionless numbers, and tables of the properties of gases and vapors. Each chapter introduces a different fluid dynamics topic, discusses the pertinent issues, outlines proven techniques for addressing those issues, and supplies useful references for further research. Covering all major aspects of classical and modern fluid dynamics, this fully updated Second Edition: Reflects the latest fluid dynamics research and engineering applications Includes new sections on emerging fields, most notably micro- and nanofluidics Surveys the range of numerical and computational methods used in fluid dynamics analysis and design Expands the scope of a number of contemporary topics by incorporating new experimental methods, more numerical approaches, and additional areas for the application of fluid dynamics Handbook of Fluid Dynamics, Second Edition provides an indispensable resource for professionals entering the field of fluid dynamics. The book also enables experts specialized in areas outside fluid dynamics to become familiar with the field.




Handbook of Computational Fluid Mechanics


Book Description

This handbook covers computational fluid dynamics from fundamentals to applications. This text provides a well documented critical survey of numerical methods for fluid mechanics, and gives a state-of-the-art description of computational fluid mechanics, considering numerical analysis, computer technology, and visualization tools. The chapters in this book are invaluable tools for reaching a deeper understanding of the problems associated with the calculation of fluid motion in various situations: inviscid and viscous, incompressible and compressible, steady and unsteady, laminar and turbulent flows, as well as simple and complex geometries. Each chapter includes a related bibliography Covers fundamentals and applications Provides a deeper understanding of the problems associated with the calculation of fluid motion




Computational Fluid Dynamics for Built and Natural Environments


Book Description

This book introduces readers to the fundamentals of simulating and analyzing built and natural environments using the Computational Fluid Dynamics (CFD) method. CFD offers a powerful tool for dealing with various scientific and engineering problems and is widely used in diverse industries. This book focuses on the most important aspects of applying CFD to the study of urban, buildings, and indoor and outdoor environments. Following the logical procedure used to prepare a CFD simulation, the book covers e.g. the governing equations, boundary conditions, numerical methods, modeling of different fluid flows, and various turbulence models. Furthermore, it demonstrates how CFD can be applied to solve a range of engineering problems, providing detailed hands-on exercises on air and water flow, heat transfer, and pollution dispersion problems that typically arise in the study of buildings and environments. The book also includes practical guidance on analyzing and reporting CFD results, as well as writing CFD reports/papers.




Environmental Fluid Mechanics


Book Description

This book contains the written versions of invited lectures presented at the Gerhard H. Jirka Memorial Colloquium on Environmental Fluid Mechanics, held June 3-4, 2011, in Karlsruhe, Germany. Professor Jirka was widely known for his outstanding work in Environmental Fluid Mechanics, and 23 eminent world-leading experts in this field contributed to