Handbook of Experimental Structural Dynamics


Book Description

SEM Handbook of Experimental Structural Dynamics stands as a comprehensive overview and reference for its subject, applicable to workers in research, product design and manufacture, and practice. The Handbook is devoted primarily to the areas of structural mechanics served by the Society for Experimental Mechanics IMAC community, such as modal analysis, rotating machinery, structural health monitoring, shock and vibration, sensors and instrumentation, aeroelasticity, ground testing, finite element techniques, model updating, sensitivity analysis, verification and validation, experimental dynamics sub-structuring, quantification of margin and uncertainty, and testing of civil infrastructure. Chapters offer comprehensive, detailed coverage of decades of scientific and technologic advance and all demonstrate an experimental perspective. Several sections specifically discuss the various types of experimental testing and common practices utilized in the automotive, aerospace, and civil structures industries as well as in the design/manufacture of sports equipment. Contributions present important theory behind relevant experimental methods as well as application and technology. Topical authors emphasize and dissect proven methods and offer detail beyond a simple review of the literature. Additionally, chapters cover practical needs of scientists and engineers who are new to the field. In most cases, neither the pertinent theory nor, in particular, the practical issues have been presented formally in an academic textbook. Each chapter in the Handbook represents a ’must read’ for someone new to the subject or for someone returning to the field after an absence. Reference lists in each chapter consist of the seminal papers in the literature.




Handbook of Experimental Structural Dynamics


Book Description

The SEM Handbook of Experimental Structural Dynamics stands as a comprehensive overview and reference for its subject, applicable to workers in research, product design and manufacture, and practice. The Handbook is devoted primarily to the areas of structural mechanics served by the Society for Experimental Mechanics IMAC community, such as modal analysis, rotating machinery, structural health monitoring, shock and vibration, sensors and instrumentation, aeroelasticity, ground testing, finite element techniques, model updating, sensitivity analysis, verification and validation, experimental dynamics sub-structuring, quantification of margin and uncertainty, and testing of civil infrastructure. Chapters offer comprehensive, detailed coverage of decades of scientific and technologic advance and all demonstrate an experimental perspective. Several sections specifically discuss the various types of experimental testing and common practices utilized in the automotive, aerospace, and civil structures industries. · History of Experimental Structural Mechanics · DIC Methods - Dynamic Photogrammetry · LDV Methods · Applied Digital Signal Processing · Introduction to Spectral - Basic Measurements · Structural Measurements - FRF · Random and Shock Testing · Rotating System Analysis Methods · Sensors Signal Conditioning Instrumentation · Design of Modal Tests · Experimental Modal Methods · Experimental Modal Parameter Evaluation · Operating Modal Analysis Methods · Analytical Numerical Substructuring · Finite Element Model Correlation · Model Updating · Damping of Materials and Structures · Model Calibration and Validation in Structures · Uncertainty Quantification: UQ, QMU and Statistics · Nonlinear System Analysis Methods (Experimental) · Structural Health Monitoring and Damage Detection · Experimental Substructure Modeling · Modal Modeling · Response (Impedance) Modeling · Nonlinear Normal Mode Analysis Techniques (Analytical) · Modal Modeling with Nonlinear Connection Elements (Analytical) · Acoustics of Structural Systems (VibroAcoustics) · Automotive Structural Testing · Civil Structural Testing · Aerospace Perspective for Modeling and Validation · Sports Equipment Testing · Applied Math for Experimental Structural Mechanics Contributions present important theory behind relevant experimental methods as well as application and technology. Topical authors emphasize and dissect proven methods and offer detail beyond a simple review of the literature. Additionally, chapters cover practical needs of scientists and engineers who are new to the field. In most cases, neither the pertinent theory nor, in particular, the practical issues have been presented formally in current academic textbooks. Each chapter in the Handbook represents a ’must read’ for someone new to the subject or for someone returning to the field after an absence. Reference lists in each chapter consist of the seminal papers in the literature. This Handbook stands in parallel to the SEM Handbook of Experimental Solid Mechanics, where this Handbook focuses on experimental dynamics of structures at a macro-scale often involving multiple components and materials where the SEM Handbook of Experimental Solid Mechanics focuses on experimental mechanics of materials at a nano-scale and/or micro-scale.




Handbook of Experimental Structural Dynamics


Book Description

The SEM Handbook of Experimental Structural Dynamics stands as a comprehensive overview and reference for its subject, applicable to workers in research, product design and manufacture, and practice. The Handbook is devoted primarily to the areas of structural mechanics served by the Society for Experimental Mechanics IMAC community, such as modal analysis, rotating machinery, structural health monitoring, shock and vibration, sensors and instrumentation, aeroelasticity, ground testing, finite element techniques, model updating, sensitivity analysis, verification and validation, experimental dynamics sub-structuring, quantification of margin and uncertainty, and testing of civil infrastructure. Chapters offer comprehensive, detailed coverage of decades of scientific and technologic advance and all demonstrate an experimental perspective. Several sections specifically discuss the various types of experimental testing and common practices utilized in the automotive, aerospace, and civil structures industries. · History of Experimental Structural Mechanics · DIC Methods - Dynamic Photogrammetry · LDV Methods · Applied Digital Signal Processing · Introduction to Spectral - Basic Measurements · Structural Measurements - FRF · Random and Shock Testing · Rotating System Analysis Methods * · Sensors Signal Conditioning Instrumentation · Design of Modal Tests · Experimental Modal Methods · Experimental Modal Parameter Evaluation · Operating Modal Analysis Methods * · Analytical Numerical Substructuring · Finite Element Model Correlation · Model Updating · Damping of Materials and Structures · Model Calibration and Validation in Structures* · Uncertainty Quantification: UQ, QMU and Statistics * · Nonlinear System Analysis Methods (Experimental) · Structural Health Monitoring and Damage Detection · Experimental Substructure Modeling · Modal Modeling · Response (Impedance) Modeling · Nonlinear Normal Mode Analysis Techniques (Analytical) * · Modal Modeling with Nonlinear Connection Elements (Analytical) · Acoustics of Structural Systems (VibroAcoustics) * · Automotive Structural Testing * · Civil Structural Testing · Aerospace Perspective for Modeling and Validation · Sports Equipment Testing * · Applied Math for Experimental Structural Mechanics * Chapter Forthcoming Contributions present important theory behind relevant experimental methods as well as application and technology. Topical authors emphasize and dissect proven methods and offer detail beyond a simple review of the literature. Additionally, chapters cover practical needs of scientists and engineers who are new to the field. In most cases, neither the pertinent theory nor, in particular, the practical issues have been presented formally in current academic textbooks. Each chapter in the Handbook represents a ’must read’ for someone new to the subject or for someone returning to the field after an absence. Reference lists in each chapter consist of the seminal papers in the literature. This Handbook stands in parallel to the SEM Handbook of Experimental Solid Mechanics, where this Handbook focuses on experimental dynamics of structures at a macro-scale often involving multiple components and materials where the SEM Handbook of Experimental Solid Mechanics focuses on experimental mechanics of materials at a nano-scale and/or micro-scale.




Handbook of Experimental Structural Dynamics


Book Description

SEM Handbook of Experimental Structural Dynamics stands as a comprehensive overview and reference for its subject, applicable to workers in research, product design and manufacture, and practice. The Handbook is devoted primarily to the areas of structural mechanics served by the Society for Experimental Mechanics IMAC community, such as modal analysis, rotating machinery, structural health monitoring, shock and vibration, sensors and instrumentation, aeroelasticity, ground testing, finite element techniques, model updating, sensitivity analysis, verification and validation, experimental dynamics sub-structuring, quantification of margin and uncertainty, and testing of civil infrastructure. Chapters offer comprehensive, detailed coverage of decades of scientific and technologic advance and all demonstrate an experimental perspective. Several sections specifically discuss the various types of experimental testing and common practices utilized in the automotive, aerospace, and civil structures industries. · History of Experimental Structural Mechanics · DIC Methods - Dynamic Photogrammetry · LDV Methods · Applied Digital Signal Processing · Introduction to Spectral - Basic Measurements · Structural Measurements - FRF · Random and Shock Testing · Rotating System Analysis Methods · Sensors Signal Conditioning Instrumentation · Design of Modal Tests · Experimental Modal Parameter Evaluation · Operating Modal Analysis Methods · Experimental Modal Methods · Analytical Numerical Substructuring · Finite Element Model Correlation · Model Updating · Damping of Materials and Structures · Model Calibration and Validation in Structures · Uncertainty Quantification: UQ, QMU and Statistics · Nonlinear System Analysis Methods (Experimental) · Structural Health Monitoring and Damage Detection · Experimental Substructure Modeling · Modal Modeling · Response (Impedance) Modeling · Nonlinear Normal Mode Analysis Techniques (Analytical) · Modal Modeling with Nonlinear Connection Elements (Analytical) · Acoustics of Structural Systems (VibroAcoustics) · Automotive Structural Testing · Civil Structural Testing · Aerospace Perspective for Modeling and Validation · Sports Equipment Testing · Applied Math for Experimental Structural Mechanics Contributions present important theory behind relevant experimental methods as well as application and technology. Topical authors emphasize and dissect proven methods and offer detail beyond a simple review of the literature. Additionally, chapters cover practical needs of scientists and engineers who are new to the field. In most cases, neither the pertinent theory nor, in particular, the practical issues have been presented formally in an academic textbook. Each chapter in the Handbook represents a 'must read' for someone new to the subject or for someone returning to the field after an absence. Reference lists in each chapter consist of the seminal papers in the literature. This Handbook stands in parallel to the SEM Handbook of Experimental Solid Mechanics, where this Handbook focuses on experimental dynamics of structures at a macro-scale often involving multiple components and materials where the SEM Handbook of Experimental Solid Mechanics focuses on experimental mechanics of materials at a nano-scale and micro-scale.




The Integrated Test Analysis Process for Structural Dynamic Systems


Book Description

Over the past 60 years, the U.S. aerospace community has developed, refined, and standardized an integrated approach to structural dynamic model verification and validation. One name for this overall approach is the Integrated Test Analysis Process (ITAP) for structural dynamic systems. ITAP consists of seven sequential tasks, namely: (1) definition of test article finite element models; (2) systematic modal test planning; (3) measured data acquisition; (4) measured data analysis; (5) experimental modal analysis; (6) systematic test-analysis correlation; and (7) reconciliation of finite element models and modal test data. Steps 1, 2, and 7 rely strictly on mathematical model disciplines, and steps 3 and 4 rely on laboratory disciplines and techniques. Current industry practice of steps 5 and 6 calls for interaction of mathematical model and laboratory disciplines, which compromises the objectivity of both modeling and laboratory disciplines. This book addresses technical content, strategies, and key relevant experiences related to all steps of ITAP, except for measured data acquisition which is the specialized domain of highly experienced laboratory professionals who contend with mechanical and electrical practicalities of instrumentation, excitation hardware, and data collection systems.




Modal Testing


Book Description

The practical, clear, and concise guide for conducting experimental modal tests Modal Testing: A Practitioner's Guide outlines the basic information necessary to conduct an experimental modal test. The text draws on the author’s extensive experience to cover the practical side of the concerns that may arise when performing an experimental modal test. Taking a hands-on approach, the book explores the issues related to conducting a test from start to finish. It covers the cornerstones of the basic information needed and summarizes all the pertinent theory related to experimental modal testing. Designed to be accessible, Modal Testing presents the most common excitation techniques used for modal testing today and is filled with illustrative examples related to impact testing which is the most widely used excitation technique for traditional experimental modal tests. This practical text is not about developing the details of the theory but rather applying the theory to solve real-life problems, and: • Delivers easy to understand explanations of complicated theoretical concepts • Presents basic steps of an experimental modal test • Offers simple explanations of methods to obtain good measurements and avoid the common blunders typically found in many test approaches • Focuses on the issues to be faced when performing an experimental modal test • Contains full-color format that enhances the clarity of the figures and presentations Modal Testing: A Practitioner's Guide is a groundbreaking reference that treats modal testing at the level of the practicing engineer or a new entrant to the field of experimental dynamic testing.




Experimental Vibration Analysis for Civil Engineering Structures


Book Description

This volume presents peer-reviewed contributions from the 10th International Conference on Experimental Vibration Analysis for Civil Engineering Structures (EVACES), held in Milan, Italy on August 30-September 1, 2023. The event brought together engineers, scientists, researchers, and practitioners, providing a forum for discussing and disseminating the latest developments and achievements in all major aspects of dynamic testing for civil engineering structures, including instrumentation, sources of excitation, data analysis, system identification, monitoring and condition assessment, in-situ and laboratory experiments, codes and standards, and vibration mitigation. The topics included but were not limited to: damage identification and structural health monitoring; testing, sensing and modeling; vibration isolation and control; system and model identification; coupled dynamical systems (including human–structure, vehicle–structure, and soil–structure interaction); and application of advanced techniques involving the Internet of Things, robot, UAV, big data and artificial intelligence.




Handbook of Structural Equation Modeling


Book Description

"This accessible volume presents both the mechanics of structural equation modeling (SEM) and specific SEM strategies and applications. The editor, along with an international group of contributors, and editorial advisory board are leading methodologists who have organized the book to move from simpler material to more statistically complex modeling approaches. Sections cover the foundations of SEM; statistical underpinnings, from assumptions to model modifications; steps in implementation, from data preparation through writing the SEM report; and basic and advanced applications, including new and emerging topics in SEM. Each chapter provides conceptually oriented descriptions, fully explicated analyses, and engaging examples that reveal modeling possibilities for use with readers' data. Many of the chapters also include access to data and syntax files at the companion website, allowing readers to try their hands at reproducing the authors' results"--




Laser Doppler Vibrometry for Non-Contact Diagnostics


Book Description

This book presents recent outcomes of the collaborative “Tricorder” project, which brings together partners from industry, research institutes and hospitals to deliver an easy contactless alternative for electrocardiograms (ECG). Featuring contributions investigating the possible applications of laser Doppler vibrometry (LDV) signals for the remote measurement of vital parameters of the heart, the book provides insights into the vision and the history of the "Tricorder" project and the basic differences between the vibrocardiograms and electrocardiograms. It also discusses topics such as signal processing, heartbeat measurement techniques, respiration frequency and oxygen saturation determination, with a particular focus on the diagnostic value of the method presented, e.g., diagnosis of atrial fibrillation and estimation of the oxygen saturation in premature infants. Further, the authors review the advantages and drawbacks of the new method and the specific fields of application. This book will appeal to researchers and industry leaders interested in laser remote sensing for medical applications as well as medical professionals curious about new healthcare technologies.




Structural Dynamics


Book Description

The proceedings contain contributions presented by authors from more than 30 countries at EURODYN 2002. The proceedings show recent scientific developments as well as practical applications, they cover the fields of theory of vibrations, nonlinear vibrations, stochastic dynamics, vibrations of structured elements, wave propagation and structure-borne sound, including questions of fatigue and damping. Emphasis is laid on vibrations of bridges, buildings, railway structures as well as on the fields of wind and earthquake engineering, repectively. Enriched by a number of keynote lectures and organized sessions the two volumes of the proceedings present an overview of the state of the art of the whole field of structural dynamics and the tendencies ot its further development.