Handbook of Glycomics


Book Description

The Handbook of Glycomics provides the first comprehensive overview of the emerging field of glycomics, defined as the study of all complex carbohydrates in an organism or cell ("the glycome"). Beginning with analytic approaches and bioinformatics, this work provides a detailed discussion of relevant databases, data integration, and analysis. It then moves on to a discussion of specific model organism and pathogen glycomes followed by therapeutic approaches to human disorders of glycosylization. Structure and function of glycomes are included along with state-of-the-art technologies and systems approaches to the analysis of glycans. - Synthesizes contributions from experts in biology, chemistry, bioinformatics, biotechnology, and medicine - Highlights chapters devoted to chemical synthesis, cancer glycomics and immune cell glycomics - Includes discussions of proteomics, mass spectrometry, NMR, array technology, and transcriptomics analytic approaches




Essentials of Glycobiology


Book Description

Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.




Handbook of Glycosyltransferases and Related Genes


Book Description

The so-called postgenomic research era has now been launched, and the field of gly cobiology and glycotechnology has become one of the most important areas in life science because glycosylation is the most common post-translational modification reaction of proteins in vivo. On the basis of Swiss-Prot data, over 50% proteins are known to undergo glycosylation, but in fact the actual functions of most of the sugar chains in the glycoconjugates remain unknown. The complex carbohydrate chains of glycoproteins, glycolipids, and proteoglycans represent the secondary gene products formed through the reactions of glycosyl transferases. The regulation of the biosynthesis of sugar chains is under the control of the expression of glycosyltransferases, their substrate specificity, and their local ization in specific tissue sites. There is a growing body of evidence to suggest that these enzymes play pivotal roles in a variety of important cellular differentiation and developmental events, as well as in disease processes. Over 300 glycosyltransferases appear to exist in mammalian tissues. If the genes that have been purified and cloned from various species such as humans, cattle, pigs, rats and mice are counted as one, approximately 110 glycogenes that encode glycosyltransferases and related genes have been cloned at present, and this number continues to grow each day. However, most of the functions of the glycosyltransferase genes and related genes are unknown. This fact has stimulated numerous new and interesting approaches in molecular biologi cal investigations.




Glycomics


Book Description

In this 3 volume collection focusing on glycomics, readers will appreciate how such discoveries were made and how such methods can be applied for readers' own research efforts - Each chapter has been designed so that enough scientific background will be given in each chapter for further development of methods by readers themselves - Useful for all levels of scientists starting from the last years of colleges, graduate students, postdoctoral fellows to professors and to all levels of scientists in research institutes including industry




Handbook on Immunosenescence


Book Description

This authoritative handbook covers all aspects of immunosenescence, with contributions from experts in the research and clinical areas. It examines methods and models for studying immunosenescence; genetics; mechanisms including receptors and signal transduction; clinical relevance in disease states including infections, autoimmunity, cancer, metabolic syndrome, neurodegenerative diseases, frailty and osteoporosis; and much more.




The Glycome


Book Description

This volume provides a comprehensive understanding of the enigmatic identity of the glycome, a complex but important area of research that has been largely ignored due to its complexity. The authors thoroughly deal with almost all aspects of the glycome, i.e., elucidation of the glycan identity enigma and its role in regulation of the cellular process, and in disease etiology. The book bridges the knowledge gap in understanding the glycome, from being a cell signature to its applications in disease etiology. In addition, it details many of the major insights regarding the possible role of the glycome in various diseases as a therapeutic marker. The book systematically covers the major aspects of the glycome, including the significance of substituting the diverse monosaccharide units to glycoproteins, the role of glycans in disease pathologies, and the challenges and advances in glycobiology. The authors stress the significance and huge encoding power of carbohydrates as well as provide helpful insights in framing the bigger picture. The Glycome: Understanding the Diversity and Complexity of Glycobiology details state-of-the-art developments and emerging challenges of glycome biology, which are going to be key areas of future research, not only in the glycobiology field but also in pharmaceutics.




Handbook of Biomarkers and Precision Medicine


Book Description

"The field of Biomarkers and Precision Medicine in drug development is rapidly evolving and this book presents a snapshot of exciting new approaches. By presenting a wide range of biomarker applications, discussed by knowledgeable and experienced scientists, readers will develop an appreciation of the scope and breadth of biomarker knowledge and find examples that will help them in their own work." -Maria Freire, Foundation for the National Institutes of Health Handbook of Biomarkers and Precision Medicine provides comprehensive insights into biomarker discovery and development which has driven the new era of Precision Medicine. A wide variety of renowned experts from government, academia, teaching hospitals, biotechnology and pharmaceutical companies share best practices, examples and exciting new developments. The handbook aims to provide in-depth knowledge to research scientists, students and decision makers engaged in Biomarker and Precision Medicine-centric drug development. Features: Detailed insights into biomarker discovery, validation and diagnostic development with implementation strategies Lessons-learned from successful Precision Medicine case studies A variety of exciting and emerging biomarker technologies The next frontiers and future challenges of biomarkers in Precision Medicine Claudio Carini, Mark Fidock and Alain van Gool are internationally recognized as scientific leaders in Biomarkers and Precision Medicine. They have worked for decades in academia and pharmaceutical industry in EU, USA and Asia. Currently, Dr. Carini is Honorary Faculty at Kings’s College School of Medicine, London, UK. Dr. Fidock is Vice President of Precision Medicine Laboratories at AstraZeneca, Cambridge, UK. Prof.dr. van Gool is Head Translational Metabolic Laboratory at Radboud university medical school, Nijmegen, NL.




Handbook of Biomarkers and Precision Medicine


Book Description

"The field of Biomarkers and Precision Medicine in drug development is rapidly evolving and this book presents a snapshot of exciting new approaches. By presenting a wide range of biomarker applications, discussed by knowledgeable and experienced scientists, readers will develop an appreciation of the scope and breadth of biomarker knowledge and find examples that will help them in their own work." -Maria Freire, Foundation for the National Institutes of Health Handbook of Biomarkers and Precision Medicine provides comprehensive insights into biomarker discovery and development which has driven the new era of Precision Medicine. A wide variety of renowned experts from government, academia, teaching hospitals, biotechnology and pharmaceutical companies share best practices, examples and exciting new developments. The handbook aims to provide in-depth knowledge to research scientists, students and decision makers engaged in Biomarker and Precision Medicine-centric drug development. Features: Detailed insights into biomarker discovery, validation and diagnostic development with implementation strategies Lessons-learned from successful Precision Medicine case studies A variety of exciting and emerging biomarker technologies The next frontiers and future challenges of biomarkers in Precision Medicine Claudio Carini, Mark Fidock and Alain van Gool are internationally recognized as scientific leaders in Biomarkers and Precision Medicine. They have worked for decades in academia and pharmaceutical industry in EU, USA and Asia. Currently, Dr. Carini is Honorary Faculty at Kings’s College School of Medicine, London, UK. Dr. Fidock is Vice President of Precision Medicine Laboratories at AstraZeneca, Cambridge, UK. Prof.dr. van Gool is Head Translational Metabolic Laboratory at Radboud university medical school, Nijmegen, NL.




Sustainable Nanosystems Development, Properties, and Applications


Book Description

Global economic demands and population surges have led to dwindling resources and problematic environmental issues. As the climate and its natural resources continue to struggle, it has become necessary to research and employ new forms of sustainable technology to help meet the growing demand. Sustainable Nanosystems Development, Properties, and Applications features emergent research and theoretical concepts in the areas of nanotechnology, photovoltaics, electrochemistry, and materials science, as well as within the physical and environmental sciences. Highlighting progressive approaches and utilization techniques, this publication is a critical reference source for researchers, engineers, students, scientists, and academicians interested in the application of sustainable nanotechnology.




Mass Spectrometry of Glycoproteins


Book Description

This comprehensive new resource in Springer s Methods in Molecular Biology series features contributions from leading researchers who provide expert advice and reproducible, cutting-edge protocols for examining glycoproteins through mass spectrometry."