Handbook of Special Functions


Book Description

Because of the numerous applications involved in this field, the theory of special functions is under permanent development, especially regarding the requirements for modern computer algebra methods. The Handbook of Special Functions provides in-depth coverage of special functions, which are used to help solve many of the most difficult problems in physics, engineering, and mathematics. The book presents new results along with well-known formulas used in many of the most important mathematical methods in order to solve a wide variety of problems. It also discusses formulas of connection and conversion for elementary and special functions, such as hypergeometric and Meijer G functions.




Handbook of Mellin Transforms


Book Description

The Mellin transformation is widely used in various problems of pure and applied mathematics, in particular, in the theory of differential and integral equations and the theory of Dirichlet series. It is found in extensive applications in mathematical physics, number theory, mathematical statistics, theory of asymptotic expansions, and especially, in the theory of special functions and integral transformations. It is essentially used in algorithms of integration in computer algebra systems. Since the majority of integrals encountered in applications can be reduced to the form of the corresponding Mellin transforms with specific parameters, this handbook can also be used for definite and indefinite integrals. By changes in variables, the Mellin transform can be turned into the Fourier and Laplace transforms. The appendices contain formulas of connection with other integral transformations, and an algorithm for determining regions of convergence of integrals. The Handbook of Mellin Transforms will be of interest and useful to all researchers and engineers who use mathematical methods. It will become the main source of formulas of Mellin transforms, as well as indefinite and definite integrals.




Handbook of Integral Equations


Book Description

Unparalleled in scope compared to the literature currently available, the Handbook of Integral Equations, Second Edition contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equa




The Handbook of Integration


Book Description

This book is a compilation of the most important and widely applicable methods for evaluating and approximating integrals. It is an indispensable time saver for engineers and scientists needing to evaluate integrals in their work. From the table of contents: - Applications of Integration - Concepts and Definitions - Exact Analytical Methods - Appro




Handbook of Mathematical Formulas and Integrals


Book Description

The extensive additions, and the inclusion of a new chapter, has made this classic work by Jeffrey, now joined by co-author Dr. H.H. Dai, an even more essential reference for researchers and students in applied mathematics, engineering, and physics. It provides quick access to important formulas, relationships between functions, and mathematical techniques that range from matrix theory and integrals of commonly occurring functions to vector calculus, ordinary and partial differential equations, special functions, Fourier series, orthogonal polynomials, and Laplace and Fourier transforms. During the preparation of this edition full advantage was taken of the recently updated seventh edition of Gradshteyn and Ryzhik's Table of Integrals, Series, and Products and other important reference works. Suggestions from users of the third edition of the Handbook have resulted in the expansion of many sections, and because of the relevance to boundary value problems for the Laplace equation in the plane, a new chapter on conformal mapping, has been added, complete with an atlas of useful mappings. - Comprehensive coverage in reference form of the branches of mathematics used in science and engineering - Organized to make results involving integrals and functions easy to locate - Results illustrated by worked examples




Transforms and Applications Handbook


Book Description

Updating the original, Transforms and Applications Handbook, Third Edition solidifies its place as the complete resource on those mathematical transforms most frequently used by engineers, scientists, and mathematicians. Highlighting the use of transforms and their properties, this latest edition of the bestseller begins with a solid introduction to signals and systems, including properties of the delta function and some classical orthogonal functions. It then goes on to detail different transforms, including lapped, Mellin, wavelet, and Hartley varieties. Written by top experts, each chapter provides numerous examples and applications that clearly demonstrate the unique purpose and properties of each type. The material is presented in a way that makes it easy for readers from different backgrounds to familiarize themselves with the wide range of transform applications. Revisiting transforms previously covered, this book adds information on other important ones, including: Finite Hankel, Legendre, Jacobi, Gengenbauer, Laguerre, and Hermite Fraction Fourier Zak Continuous and discrete Chirp-Fourier Multidimensional discrete unitary Hilbert-Huang Most comparable books cover only a few of the transforms addressed here, making this text by far the most useful for anyone involved in signal processing—including electrical and communication engineers, mathematicians, and any other scientist working in this field.




H-Transforms


Book Description

Along with more than 2100 integral equations and their solutions, this handbook outlines exact analytical methods for solving linear and nonlinear integral equations and provides an evaluation of approximate methods. Each section provides examples that show how methods can be applied to specific equations.




Operational Calculus and Related Topics


Book Description

Even though the theories of operational calculus and integral transforms are centuries old, these topics are constantly developing, due to their use in the fields of mathematics, physics, and electrical and radio engineering. Operational Calculus and Related Topics highlights the classical methods and applications as well as the recent advan




Integral Transforms and Their Applications


Book Description

Integral Transforms and Their Applications, provides a systematic , comprehensive review of the properties of integral transforms and their applications to the solution of boundary and initial value problems. Over 750 worked examples, exercises, and applications illustrate how transform methods can be used to solve problems in applied mathematics, mathematical physics, and engineering. The specific applications discussed include problems in differential, integral, and difference equations; electric circuits and networks; vibrations and wave propagation; heat conduction; fractional derivatives and fractional integrals; dynamical systems; signal processing; quantum mechanics; atmosphere and ocean dynamics; physical chemistry; mathematical biology; and probability and statistics. Integral Transforms and Their Applications includes broad coverage the standard material on integral transforms and their applications, along with modern applications and examples of transform methods. It is both an ideal textbook for students and a sound reference for professionals interested in advanced study and research in the field.