CRC Materials Science and Engineering Handbook


Book Description

The CRC Materials Science and Engineering Handbook, Third Edition is the most comprehensive source available for data on engineering materials. Organized in an easy-to-follow format based on materials properties, this definitive reference features data verified through major professional societies in the materials field, such as ASM International a




Practical Handbook of Materials Science


Book Description

CRC Practical Handbooks are a series of single-volume bench manuals that feature a synthesis of frequently used, basic reference information. These highly abridged versions of existing CRC multi-volume Handbooks contain largely tabular and graphic data. They provide extensive coverage in a scientific discipline and enable quick, convenient access to the most practical reference information...on the spot! Leading professionals in their respective fields collaborated to provide individuals and institutions with an economical and easy-to-use source of classic reference information. Practical Handbook of Materials Science is a concise reference for the physical properties of solid state and structural materials. This work is interdisciplinary in approach and content, and it covers a variety of types of materials, including materials of present commercial importance, plus new biomedical, composite, and nuclear materials. Research scientists and practicing engineers in the fields of materials science and engineering, civil engineering, chemistry, physics, and nuclear chemists and engineers will benefit from this economical desktop reference. It also has a large interdisciplinary market for students at the advanced undergraduate and graduate levels in science and engineering.




Springer Handbook of Materials Data


Book Description

The second edition of this well-received handbook is the most concise yet comprehensive compilation of materials data. The chapters provide succinct descriptions and summarize essential and reliable data for various types of materials. The information is amply illustrated with 900 tables and 1050 figures selected primarily from well-established data collections, such as Landolt-Börnstein, which is now part of the SpringerMaterials database. The new edition of the Springer Handbook of Materials Data starts by presenting the latest CODATA recommended values of the fundamental physical constants and provides comprehensive tables of the physical and physicochemical properties of the elements. 25 chapters collect and summarize the most frequently used data and relationships for numerous metals, nonmetallic materials, functional materials and selected special structures such as liquid crystals and nanostructured materials. Along with careful updates to the content and the inclusion of timely and extensive references, this second edition includes new chapters on polymers, materials for solid catalysts and low-dimensional semiconductors. This handbook is an authoritative reference resource for engineers, scientists and students engaged in the vast field of materials science.




Handbook of Materials Science


Book Description

Published in 1974: The CRC Handbook of Materials Science provides a current and readily accessible guide to the physical properties of solid state and structural materials.




Handbook of Materials Modeling


Book Description

The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.




Materials Handbook


Book Description

This unique and practical book provides quick and easy access to data on the physical and chemical properties of all classes of materials. The second edition has been much expanded to include whole new families of materials while many of the existing families are broadened and refined with new material and up-to-date information. Particular emphasis is placed on the properties of common industrial materials in each class. Detailed appendices provide additional information, and careful indexing and a tabular format make the data quickly accessible. This book is an essential tool for any practitioner or academic working in materials or in engineering.




Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications


Book Description

The design and study of materials is a pivotal component to new discoveries in the various fields of science and technology. By better understanding the components and structures of materials, researchers can increase its applications across different industries. Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications is a compendium of the latest academic material on investigations, technologies, and techniques pertaining to analyzing the synthesis and design of new materials. Through its broad and extensive coverage on a variety of crucial topics, such as nanomaterials, biomaterials, and relevant computational methods, this multi-volume work is an essential reference source for engineers, academics, researchers, students, professionals, and practitioners seeking innovative perspectives in the field of materials science and engineering.




Handbook of Optical Materials


Book Description

For years scientists turned to the CRC Handbook of Laser Science & Technology for reliable data on optical materials. Out of print for several years, that standard-setting work now has a successor: the Handbook of Optical Materials. This new handbook is an authoritative compilation of the physical properties of materials used in all types of lasers and optical systems. In it, scientist, author, and editor Dr. Marvin J. Weber provides extensive data tabulations and references for the most important optical materials, including crystals, glasses, polymers, metals, liquids, and gases. The properties detailed include both linear and nonlinear optical properties, mechanical properties, thermal properties together with many additional special properties, such as electro-, magneto-, and elasto-optic properties. Using a minimum of narration and logically organized by material properties, the handbook's unique presentation simplifies the process of comparing different materials for their suitability in particular applications. Appendices furnish a wealth of other useful information, including lists of the many abbreviations and acronyms that proliferate in this field. The Handbook of Optical Materials is simply the most complete one-stop source available for materials data essential to lasers and optical systems.




Handbook of Advanced Materials Testing


Book Description

This work discusses techniques for developing new engineering materials such as elastomers, plastic blends, composites, ceramics and high-temperature alloys. Instrumentation for evaluating their properties and identifying potential end uses are presented.;The book is intended for materials, manufacturing, mechanical, chemical and metallurgical engi




Aerospace Materials Handbook


Book Description

Whether an airplane or a space shuttle, a flying machine requires advanced materials to provide a strong, lightweight body and a powerful engine that functions at high temperature. The Aerospace Materials Handbook examines these materials, covering traditional superalloys as well as more recently developed light alloys. Capturing state-of-the-art d