Petr Hájek on Mathematical Fuzzy Logic


Book Description

This volume celebrates the work of Petr Hájek on mathematical fuzzy logic and presents how his efforts have influenced prominent logicians who are continuing his work. The book opens with a discussion on Hájek's contribution to mathematical fuzzy logic and with a scientific biography of him, progresses to include two articles with a foundation flavour, that demonstrate some important aspects of Hájek's production, namely, a paper on the development of fuzzy sets and another paper on some fuzzy versions of set theory and arithmetic. Articles in the volume also focus on the treatment of vagueness, building connections between Hájek's favorite fuzzy logic and linguistic models of vagueness. Other articles introduce alternative notions of consequence relation, namely, the preservation of truth degrees, which is discussed in a general context, and the differential semantics. For the latter, a surprisingly strong standard completeness theorem is proved. Another contribution also looks at two principles valid in classical logic and characterize the three main t-norm logics in terms of these principles. Other articles, with an algebraic flavour, offer a summary of the applications of lattice ordered-groups to many-valued logic and to quantum logic, as well as an investigation of prelinearity in varieties of pointed lattice ordered algebras that satisfy a weak form of distributivity and have a very weak implication. The last part of the volume contains an article on possibilistic modal logics defined over MTL chains, a topic that Hájek discussed in his celebrated work, Metamathematics of Fuzzy Logic, and another one where the authors, besides offering unexpected premises such as proposing to call Hájek's basic fuzzy logic HL, instead of BL, propose a very weak system, called SL as a candidate for the role of the really basic fuzzy logic. The paper also provides a generalization of the prelinearity axiom, which was investigated by Hájek in the context of fuzzy logic.




Handbook of Mathematical Fuzzy Logic


Book Description

Originating as an attempt to provide solid logical foundations for fuzzy set theory, and motivated also by philosophical and computational problems of vagueness and imprecision, Mathematical Fuzzy Logic (MFL) has become a significant subfield of mathematical logic. Research in this area focuses on many-valued logics with linearly ordered truth values and has yielded elegant and deep mathematical theories and challenging problems, thus continuing to attract an ever increasing number of researchers. This handbook provides, through its several volumes, an up-to-date systematic presentation of the best-developed areas of MFL. Its intended audience is researchers working on MFL or related fields, that may use the text as a reference book, and anyone looking for a comprehensive introduction to MFL. This handbook will be useful not only for readers interested in pure mathematical logic, but also for those interested in logical foundations of fuzzy set theory or in a mathematical apparatus suitable for dealing with some philosophical and linguistic issues related to vagueness. This third volume starts with three chapters on semantics of fuzzy logics, namely, on the structure of linearly ordered algebras, on semantic games, and on Ulam-Renyi games; it continues with an introduction to fuzzy logics with evaluated syntax, a survey of fuzzy description logics, and a study of probability on MV-algebras; and it ends with a philosophical chapter on the role of fuzzy logics in theories of vagueness."




Mathematics of Fuzzy Sets


Book Description

Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory is a major attempt to provide much-needed coherence for the mathematics of fuzzy sets. Much of this book is new material required to standardize this mathematics, making this volume a reference tool with broad appeal as well as a platform for future research. Fourteen chapters are organized into three parts: mathematical logic and foundations (Chapters 1-2), general topology (Chapters 3-10), and measure and probability theory (Chapters 11-14). Chapter 1 deals with non-classical logics and their syntactic and semantic foundations. Chapter 2 details the lattice-theoretic foundations of image and preimage powerset operators. Chapters 3 and 4 lay down the axiomatic and categorical foundations of general topology using lattice-valued mappings as a fundamental tool. Chapter 3 focuses on the fixed-basis case, including a convergence theory demonstrating the utility of the underlying axioms. Chapter 4 focuses on the more general variable-basis case, providing a categorical unification of locales, fixed-basis topological spaces, and variable-basis compactifications. Chapter 5 relates lattice-valued topologies to probabilistic topological spaces and fuzzy neighborhood spaces. Chapter 6 investigates the important role of separation axioms in lattice-valued topology from the perspective of space embedding and mapping extension problems, while Chapter 7 examines separation axioms from the perspective of Stone-Cech-compactification and Stone-representation theorems. Chapters 8 and 9 introduce the most important concepts and properties of uniformities, including the covering and entourage approaches and the basic theory of precompact or complete [0,1]-valued uniform spaces. Chapter 10 sets out the algebraic, topological, and uniform structures of the fundamentally important fuzzy real line and fuzzy unit interval. Chapter 11 lays the foundations of generalized measure theory and representation by Markov kernels. Chapter 12 develops the important theory of conditioning operators with applications to measure-free conditioning. Chapter 13 presents elements of pseudo-analysis with applications to the Hamilton–Jacobi equation and optimization problems. Chapter 14 surveys briefly the fundamentals of fuzzy random variables which are [0,1]-valued interpretations of random sets.




Logic, Language, Information, and Computation


Book Description

Edited in collaboration with FoLLI, the Association of Logic, Language and Information this book constitutes the refereed proceedings of the 21st Workshop on Logic, Language, Information and Communication, WoLLIC 2014, held in Valparaiso, Chile, in September 2014. The 15 contributed papers presented together with 6 invited lectures were carefully reviewed and selected from 29 submissions. The focus of the workshop was on the following subjects Inter-Disciplinary Research involving Formal Logic, Computing and Programming Theory, and Natural Language and Reasoning.




Logic and Implication


Book Description

This monograph presents a general theory of weakly implicative logics, a family covering a vast number of non-classical logics studied in the literature, concentrating mainly on the abstract study of the relationship between logics and their algebraic semantics. It can also serve as an introduction to (abstract) algebraic logic, both propositional and first-order, with special attention paid to the role of implication, lattice and residuated connectives, and generalized disjunctions. Based on their recent work, the authors develop a powerful uniform framework for the study of non-classical logics. In a self-contained and didactic style, starting from very elementary notions, they build a general theory with a substantial number of abstract results. The theory is then applied to obtain numerous results for prominent families of logics and their algebraic counterparts, in particular for superintuitionistic, modal, substructural, fuzzy, and relevant logics. The book may be of interest to a wide audience, especially students and scholars in the fields of mathematics, philosophy, computer science, or related areas, looking for an introduction to a general theory of non-classical logics and their algebraic semantics.




Mathematical Principles of Fuzzy Logic


Book Description

Mathematical Principles of Fuzzy Logic provides a systematic study of the formal theory of fuzzy logic. The book is based on logical formalism demonstrating that fuzzy logic is a well-developed logical theory. It includes the theory of functional systems in fuzzy logic, providing an explanation of what can be represented, and how, by formulas of fuzzy logic calculi. It also presents a more general interpretation of fuzzy logic within the environment of other proper categories of fuzzy sets stemming either from the topos theory, or even generalizing the latter. This book presents fuzzy logic as the mathematical theory of vagueness as well as the theory of commonsense human reasoning, based on the use of natural language, the distinguishing feature of which is the vagueness of its semantics.




A First Course in Fuzzy Logic


Book Description

A First Course in Fuzzy Logic, Third Edition continues to provide the ideal introduction to the theory and applications of fuzzy logic. This best-selling text provides a firm mathematical basis for the calculus of fuzzy concepts necessary for designing intelligent systems and a solid background for readers to pursue further studies and real-world a




Logic for Programming, Artificial Intelligence, and Reasoning


Book Description

This book constitutes the proceedings of the 20th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR-20, held in November 2015, in Suva, Fiji. The 43 regular papers presented together with 1 invited talk included in this volume were carefully reviewed and selected from 92 submissions. The series of International Conferences on Logic for Programming, Artificial Intelligence and Reasoning, LPAR, is a forum where, year after year, some of the most renowned researchers in the areas of logic, automated reasoning, computational logic, programming languages and their applications come to present cutting-edge results, to discuss advances in these fields, and to exchange ideas in a scientifically emerging part of the world.




Handbook of Research on Fuzzy Information Processing in Databases


Book Description

"This book provides comprehensive coverage and definitions of the most important issues, concepts, trends, and technologies in fuzzy topics applied to databases, discussing current investigation into uncertainty and imprecision management by means of fuzzy sets and fuzzy logic in the field of databases and data mining. It offers a guide to fuzzy information processing in databases"--Provided by publisher.




Handbook of Logical Thought in India


Book Description

This collection of articles is unique in the way it approaches established material on the various logical traditions in India. Instead of classifying these traditions within Schools as is the usual approach, the material here is classified into sections based on themes ranging from Fundamentals of ancient logical traditions to logic in contemporary mathematics and computer science. This collection offers not only an introduction to the key themes in different logical traditions such as Nyaya, Buddhist and Jaina, it also highlights certain unique characteristics of these traditions as well as contribute new material in the relationship of logic to aesthetics, linguistics, Kashmir Saivism as well as the forgotten Tamil contribution to logic.