Handbook of Molecular Plasmonics


Book Description

While several reviews and books on surface nanophotonics and fluorescence spectroscopy are available, an updated focus on molecular plasmonics, including both theoretical methods and experimental aspects, is still lacking. This handbook is a comprehensive overview on the physics of the plasmon–emitter interaction, ranging from electromagnetism to quantum mechanics, from metal-enhanced fluorescence to surface-enhanced Raman scattering, from optical microscopy to synthesis of metal nanoparticles, filling the gap in the literature of this merging field. It allows experimentalists to have a solid theoretical reference at a different level of accuracy, and theoreticians to find new stimuli for novel computational methods and emerging applications.




Handbook of Surface Plasmon Resonance


Book Description

Surface plasmon resonance (SPR) plays a dominant role in real-time interaction sensing of biomolecular binding events, this book provides a total system description including optics, fluidics and sensor surfaces for a wide researcher audience.




Light, Plasmonics and Particles


Book Description

Light, Plasmonics and Particles focuses on the fundamental science and engineering applications of light scattering by particles, aerosols and hydrosols, and of localized plasmonics. The book is intended to be a self-contained and coherent resource volume for graduate students and professionals in the disciplines of materials science, engineering and related disciplines of physics and chemistry. In addition to chapters related to fundamental concepts, it includes detailed discussion of different numerical models, experimental systems and applications. In order to develop new devices, processes and applications, we need to advance our understanding of light-matter interactions. For this purpose, we need to have a firm grasp of electromagnetic wave phenomena, and absorption and scattering of waves by different size and shape geometrical objects. In addition, understanding of tunneling of waves based on electron and lattice vibrations and coupling with the thermal fluctuations to enhance near-field energy transfer mechanisms are required for the development of future energy harvesting devices and sensors. - Reviews the fundamental science, available computational tools, experimental systems, and a wide range of applications of plasmonics - Connects the cross-cutting science of the physics of electromagnetic light scattering by particles, plasmonics and phononic interactions at the electronic, molecular and lattice levels of materials - Reviews applications of light-matter interactions of particles, aerosols, hydrosols and localized plasmonics




Plasmonics: Fundamentals and Applications


Book Description

Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.




21st Century Nanoscience – A Handbook


Book Description

21st Century Nanoscience - A Handbook: Nanophotonics, Nanoelectronics, and Nanoplasmonics (Volume 6) will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics by the same editor published in the fall of 2010 and was embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. This sixth volume in a ten-volume set covers nanophotonics, nanoelectronics, and nanoplasmonics. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanophysics extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.




Molecular Plasmonics


Book Description

This book summarizes the results of studies of molecules and molecular complexes using techniques based on surface plasmon resonance (SPR) in a novel scientific direction called molecular plasmonics. It presents the current state of investigations in the field of molecular plasmonics and discusses its two main physical phenomena: surface plasmon–polariton resonance (SPPR) and localized SPR (LSPR). Among the mathematical methods for the calculation of plasmonic systems response, the book emphasizes models based on the transfer-matrix method, Green function formalism, Mie scattering theory, and numerical methods. It considers the possibilities of the SPPR technique for registering conformational changes, surface plasmon–mediated photopolymerization, electrochemical processes, as well as reversible optoelectronic and physicochemical properties during investigation of molecular systems. It describes applications of the LSPR method, including creation of metamaterials, surface-enhanced fluorescence, and bio- and chemosensing using noble metal nanoparticles in colloidal, array, and composite polymeric film formats. It also highlights the development and applications of plasmonic nanochips.




Handbook of Molecular Plasmonics


Book Description

While several reviews and books on surface nanophotonics and fluorescence spectroscopy are available, an updated focus on molecular plasmonics, including both theoretical methods and experimental aspects, is still lacking. This handbook is a comprehensive overview on the physics of the plasmon-emitter interaction, ranging from electromagnetism to q




Handbook of Research on Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering


Book Description

As a paradigm for the future, micro-scale technology seeks to fuse revolutionary concepts in science and engineering and then translate it into reality. Nanotechnology is an interdisciplinary field that aims to connect what is seen with the naked eye and what is unseen on the molecular level. The Handbook of Research on Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering examines the strengths and future potential of micro-scale technologies in a variety of industries. Highlighting the benefits, shortcomings, and emerging perspectives in the application of nano-scale technologies, this book is a comprehensive reference source for synthetic chemists, engineers, graduate students, and researchers with an interest in the multidisciplinary applications, as well as the ongoing research in the field.




Springer Handbook of Aerogels


Book Description

This indispensable handbook provides comprehensive coverage of the current state-of-the-art in inorganic, organic, and composite aerogels – from synthesis and characterization to cutting-edge applications and their potential market impact. Built upon Springer’s successful Aerogels Handbook published in 2011, this handbook features extensive revisions and timely updates, reflecting the changes in this fast-growing field. Aerogels are the lightest solids known to man. Up to 1000 times lighter than glass and with a density only four times that of air, they possess extraordinarily high thermal, electrical, and acoustic insulation properties, and boast numerous entries in Guinness World Records. Originally based on silica, R&D efforts have extended this class of materials to incorporate non-silicate inorganic oxides, natural and synthetic organic polymers, carbon, metal, and ceramic materials. Composite systems involving polymer-crosslinked aerogels and interpenetrating hybrid networks have been developed and exhibit remarkable mechanical strength and flexibility. Even more exotic aerogels based on clays, chalcogenides, phosphides, quantum dots, and biopolymers such as chitosan are opening new applications for the construction, transportation, energy, defense and healthcare industries. Applications in electronics, chemistry, mechanics, engineering, energy production and storage, sensors, medicine, nanotechnology, military and aerospace, oil and gas recovery, thermal insulation, and household uses are being developed. Readers of this fully updated and expanded edition will find an exhaustive source for all aerogel materials known today, their fabrication, upscaling aspects, physical and chemical properties, and the most recent advances towards applications and commercial use. This key reference is essential reading for a combined audience of graduate students, academic researchers, and industry professionals.




Plasmonics and Super-Resolution Imaging


Book Description

Plasmonics is an emerging field mainly developed within the past two decades. Due to its unique capabilities to manipulate light at deep subwavelength scales, plasmonics has been commonly treated as the most important part of nanophotonics. Plasmonic-assisted optical microscopy techniques, especially super-resolution microscopy, have shown tremendous potential and attracted much attention. This book aims to collect cutting-edge studies in various optical imaging technologies with advanced performances that are enabled or enhanced by plasmonics. The basic working principles, development details, and potential future direction and perspectives are discussed. Edited by Zhaowei Liu, a prominent researcher in the field of super-resolution microscopy, this book will be an excellent reference for anyone in the field of nanophotonics, plasmonics, and optical microscopy.