Fundamental Principles of Optical Lithography


Book Description

The fabrication of an integrated circuit requires a variety of physical and chemical processes to be performed on a semiconductor substrate. In general, these processes fall into three categories: film deposition, patterning, and semiconductor doping. Films of both conductors and insulators are used to connect and isolate transistors and their components. By creating structures of these various components millions of transistors can be built and wired together to form the complex circuitry of modern microelectronic devices. Fundamental to all of these processes is lithography, ie, the formation of three-dimensional relief images on the substrate for subsequent transfer of the pattern to the substrate. This book presents a complete theoretical and practical treatment of the topic of lithography for both students and researchers. It comprises ten detailed chapters plus three appendices with problems provided at the end of each chapter. Additional Information: Visiting http://www.lithoguru.com/textbook/index.html enhances the reader's understanding as the website supplies information on how you can download a free laboratory manual, Optical Lithography Modelling with MATLABĀ®, to accompany the textbook. You can also contact the author and find help for instructors.




Field Guide to Optical Lithography


Book Description

This Field Guide distills the material written by Chris Mack over the past 20 years, including notes from his graduate-level lithography course at the University of Texas at Austin. It details the lithography process, image formation, imaging onto a photoresist, photoresist chemistry, and lithography control and optimization. An introduction to next-generation lithographic technologies is also included, as well as an extensive lithography glossary and a summation of salient equations critical to anyone involved in the lithography industry.




Handbook of Microlithography, Micromachining, and Microfabrication: Micromachining and microfabrication


Book Description

Focusing on the use of microlithography techniques in microelectronics manufacturing, this volume is one of a series addressing a rapidly growing field affecting the integrated circuit industry. New applications in such areas as sensors, actuators and biomedical devices, are described.




Optical Lithography


Book Description

This book is written for new and experienced engineers, technology managers, and senior technicians who want to enrich their understanding of the image formation physics of a lithographic system. Readers will gain knowledge of the basic equations and constants that drive optical lithography, learn the basics of exposure systems and image formation, and come away with a full understanding of system components, processing, and optimization. Readers will also get an overview of the outlook of optical lithography and means to enhance semiconductor manufacturing. This second edition blends the author's unique experience in research, teaching, and world-class high-volume manufacturing to add brand new material on proximity printing, as well as updated and expanded material on exposure systems, image formation, E-D methodology, hardware components, processing and optimization, and EUV and immersion lithographies.




Principles of Lithography


Book Description

Lithography is a field in which advances proceed at a swift pace. This book was written to address several needs, and the revisions for the second edition were made with those original objectives in mind. Many new topics have been included in this text commensurate with the progress that has taken place during the past few years, and several subjects are discussed in more detail. This book is intended to serve as an introduction to the science of microlithography for people who are unfamiliar with the subject. Topics directly related to the tools used to manufacture integrated circuits are addressed in depth, including such topics as overlay, the stages of exposure, tools, and light sources. This text also contains numerous references for students who want to investigate particular topics in more detail, and they provide the experienced lithographer with lists of references by topic as well. It is expected that the reader of this book will have a foundation in basic physics and chemistry. No topics will require knowledge of mathematics beyond elementary calculus.




Handbook of Photomask Manufacturing Technology


Book Description

As the semiconductor industry attempts to increase the number of functions that will fit into the smallest space on a chip, it becomes increasingly important for new technologies to keep apace with these demands. Photomask technology is one of the key areas to achieving this goal. Although brief overviews of photomask technology exist in the literature, the Handbook of Photomask Manufacturing Technology is the first in-depth, comprehensive treatment of existing and emerging photomask technologies available. The Handbook of Photomask Manufacturing Technology features contributions from 40 internationally prominent authors from industry, academia, government, national labs, and consortia. These authors discuss conventional masks and their supporting technologies, as well as next-generation, non-optical technologies such as extreme ultraviolet, electron projection, ion projection, and x-ray lithography. The book begins with an overview of the history of photomask development. It then demonstrates the steps involved in designing, producing, testing, inspecting, and repairing photomasks, following the sequences observed in actual production. The text also includes sections on materials used as well as modeling and simulation. Continued refinements in the photomask-making process have ushered in the sub-wavelength era in nanolithography. This invaluable handbook synthesizes these refinements and provides the tools and possibilities necessary to reach the next generation of microfabrication technologies.




Stone Lithography


Book Description

"In this practical handbook, Paul Croft offers a comprehensive approach to the many aspects of lithography. Through simplified steps the information is presented in a logical and meaningful manner. This lavishly illustrated guide is also teeming with examples of prints from an international group of artists, showing the beautiful work that is being produced around the world today."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved




Plate Lithography


Book Description

This Printmaking Handbook is a companion volume to Paul Croft's previous book, Stone Lithography. The author guides the reader through all aspects of plate lithography with step-by-step instructions accompanied by clear, colour photographs. The author also includes amazing work by well-known practitioners from around the world. This beautifully illustrated, yet practical guide, is essential for all those interested in lithography.




Penrose's Annual


Book Description




EUV Lithography


Book Description

Editorial Review Dr. Bakshi has compiled a thorough, clear reference text covering the important fields of EUV lithography for high-volume manufacturing. This book has resulted from his many years of experience in EUVL development and from teaching this subject to future specialists. The book proceeds from an historical perspective of EUV lithography, through source technology, optics, projection system design, mask, resist, and patterning performance, to cost of ownership. Each section contains worked examples, a comprehensive review of challenges, and relevant citations for those who wish to further investigate the subject matter. Dr. Bakshi succeeds in presenting sometimes unfamiliar material in a very clear manner. This book is also valuable as a teaching tool. It has become an instant classic and far surpasses others in the EUVL field. --Dr. Akira Endo, Chief Development Manager, Gigaphoton Inc. Description Extreme ultraviolet lithography (EUVL) is the principal lithography technology aiming to manufacture computer chips beyond the current 193-nm-based optical lithography, and recent progress has been made on several fronts: EUV light sources, optics, optics metrology, contamination control, masks and mask handling, and resists. This comprehensive volume is comprised of contributions from the world's leading EUVL researchers and provides all of the critical information needed by practitioners and those wanting an introduction to the field. Interest in EUVL technology continues to increase, and this volume provides the foundation required for understanding and applying this exciting technology. About the editor of EUV Lithography Dr. Vivek Bakshi previously served as a senior member of the technical staff at SEMATECH; he is now president of EUV Litho, Inc., in Austin, Texas.