Handbook of Porous Media


Book Description

Over the last three decades, advances in modeling flow, heat, and mass transfer through a porous medium have dramatically transformed engineering applications. Comprehensive and cohesive, Handbook of Porous Media, Second Edition presents a compilation of research related to heat and mass transfer including the development of practical applications




Porous Media


Book Description

This book examines the relationship between transport properties and pore structure of porous material. Models of pore structure are presented with a discussion of how such models can be used to predict the transport properties of porous media. Portions of the book are devoted to interpretations of experimental results in this area and directions for future research. Practical applications are given where applicable, and are expected to be useful for a large number of different fields, including reservoir engineering, geology, hydrogeology, soil science, chemical process engineering, biomedical engineering, fuel technology, hydrometallurgy, nuclear reactor technology, and materials science. - Presents mechanisms of immiscible and miscible displacement (hydrodynamic dispersion) process in porous media - Examines relationships between pore structure and fluid transport - Considers approaches to enhanced oil recovery - Explores network modeling and perolation theory




Principles of Heat Transfer in Porous Media


Book Description

Although the empirical treatment of fluid flow and heat transfer in porous media is over a century old, only in the last three decades has the transport in these heterogeneous systems been addressed in detail. So far, single-phase flows in porous media have been treated or at least formulated satisfactorily, while the subject of two-phase flow and the related heat-transfer in porous media is still in its infancy. This book identifies the principles of transport in porous media and compares the avalaible predictions based on theoretical treatments of various transport mechanisms with the existing experimental results. The theoretical treatment is based on the volume-averaging of the momentum and energy equations with the closure conditions necessary for obtaining solutions. While emphasizing a basic understanding of heat transfer in porous media, this book does not ignore the need for predictive tools; whenever a rigorous theoretical treatment of a phenomena is not avaliable, semi-empirical and empirical treatments are given.




Handbook of Filter Media


Book Description

An Introduction to Filter Media -- Textiles -- Filter Papers and Filter Sheets -- Media for air and gas filters -- Screens and Meshes -- Porous Sheets and Tubes (excluding Membranes) -- Membranes -- Cartridges and Special Fabrications -- Loose Powders, granules and fibres -- Testing filter media.




The Rock Physics Handbook


Book Description

A significantly expanded new edition of this practical guide to rock physics and geophysical interpretation for reservoir geophysicists and engineers.




Handbook of Fluid Dynamics


Book Description

Handbook of Fluid Dynamics offers balanced coverage of the three traditional areas of fluid dynamics—theoretical, computational, and experimental—complete with valuable appendices presenting the mathematics of fluid dynamics, tables of dimensionless numbers, and tables of the properties of gases and vapors. Each chapter introduces a different fluid dynamics topic, discusses the pertinent issues, outlines proven techniques for addressing those issues, and supplies useful references for further research. Covering all major aspects of classical and modern fluid dynamics, this fully updated Second Edition: Reflects the latest fluid dynamics research and engineering applications Includes new sections on emerging fields, most notably micro- and nanofluidics Surveys the range of numerical and computational methods used in fluid dynamics analysis and design Expands the scope of a number of contemporary topics by incorporating new experimental methods, more numerical approaches, and additional areas for the application of fluid dynamics Handbook of Fluid Dynamics, Second Edition provides an indispensable resource for professionals entering the field of fluid dynamics. The book also enables experts specialized in areas outside fluid dynamics to become familiar with the field.




Handbook of Nonwoven Filter Media


Book Description

The Handbook of Nonwoven Filter Media, Second Edition provides readers with a fundamental understanding of nonwoven filter media. It is one of the few books dealing exclusively with the subject, and is primarily intended as a reference for people in the nonwovens industry (industry and academic researchers, technical, marketing , and quality control personnel) and universities offering courses in filtration theory and practice and nonwovens technology.The book includes applications for gas, liquid, and engine filtration, and identifies the types of filter media used in these applications. The various separation technologies that can be achieved with nonwoven filter media are revealed and discussed. Theoretical presentation is based on flow through porous media, and is developed around a nonwovens or engineered fabrics orientation. - Presents the latest information on legislative, regulatory, environmental and sustainability issues affecting the nonwovens and filtration industries - Includes a comprehensive discussion of Computational Flow Dynamics (CFD) by Dr. George Chase, University of Akron, USA - Includes the latest Global and North American marketing statistics for filters and filter media prepared by Brad Kalil of INDA




Adsorption by Powders and Porous Solids


Book Description

The declared objective of this book is to provide an introductory review of the various theoretical and practical aspects of adsorption by powders and porous solids with particular reference to materials of technological importance. The primary aim is to meet the needs of students and non-specialists who are new to surface science or who wish to use the advanced techniques now available for the determination of surface area, pore size and surface characterization. In addition, a critical account is given of recent work on the adsorptive properties of activated carbons, oxides, clays and zeolites. - Provides a comprehensive treatment of adsorption at both the gas/solid interface and the liquid/solid interface - Includes chapters dealing with experimental methodology and the interpretation of adsorption data obtained with porous oxides, carbons and zeolites - Techniques capture the importance of heterogeneous catalysis, chemical engineering and the production of pigments, cements, agrochemicals, and pharmaceuticals




The Rock Physics Handbook


Book Description

Brings together widely scattered theoretical and laboratory rock physics relations critical for modelling and interpretation of geophysical data.




Convective Heat Transfer in Porous Media


Book Description

Focusing on heat transfer in porous media, this book covers recent advances in nano and macro’ scales. Apart from introducing heat flux bifurcation and splitting within porous media, it highlights two-phase flow, nanofluids, wicking, and convection in bi-disperse porous media. New methods in modeling heat and transport in porous media, such as pore-scale analysis and Lattice–Boltzmann methods, are introduced. The book covers related engineering applications, such as enhanced geothermal systems, porous burners, solar systems, transpiration cooling in aerospace, heat transfer enhancement and electronic cooling, drying and soil evaporation, foam heat exchangers, and polymer-electrolyte fuel cells.