Handbook of Poststack Seismic Attributes


Book Description

The Handbook of Poststack Seismic Attributes is a general reference for poststack seismic attributes. It discusses their theory, meaning, computation, and application, with the goal of improving understanding so that seismic attributes can be applied more effectively. The chapters of the book build upon each other and progress from basic attributes to more involved methods. The book introduces the ideas that underlie seismic attributes and reviews their history from their origins to current developments. It examines attribute maps and interval statistics; complex trace attributes; 3D attributes that quantify aspects of geologic structure and stratigraphy, primarily dip, azimuth, curvature, reflection spacing, and parallelism; seismic discontinuity attributes derived through variances or differences; spectral decomposition, thin-bed analysis, and waveform classification; the two poststack methods that purportedly record rock properties — relative acoustic impedance through recursive inversion, and Q estimation through spectral ratioing; and multiattribute analysis through volume blending, cross-plotting, principal component analysis, and unsupervised classification. The book ends with an overview of how seismic attributes aid data interpretation and discusses bright spots, frequency shadows, faults, channels, diapirs, and data reconnaissance. A glossary provides definitions of seismic attributes and methods, and appendices provide background mathematics. The book is intended for reflection seismologists engaged in petroleum exploration, including seismic data interpreters, data processors, researchers, and students.




Meta-attributes and Artificial Networking


Book Description

Applying machine learning to the interpretation of seismic data Seismic data gathered on the surface can be used to generate numerous seismic attributes that enable better understanding of subsurface geological structures and stratigraphic features. With an ever-increasing volume of seismic data available, machine learning augments faster data processing and interpretation of complex subsurface geology. Meta-Attributes and Artificial Networking: A New Tool for Seismic Interpretation explores how artificial neural networks can be used for the automatic interpretation of 2D and 3D seismic data. Volume highlights include: Historic evolution of seismic attributes Overview of meta-attributes and how to design them Workflows for the computation of meta-attributes from seismic data Case studies demonstrating the application of meta-attributes Sets of exercises with solutions provided Sample data sets available for hands-on exercises The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.




Seismic Attributes as the Framework for Data Integration Throughout the Oilfield Life Cycle


Book Description

Useful attributes capture and quantify key components of the seismic amplitude and texture for subsequent integration with well log, microseismic, and production data through either interactive visualization or machine learning. Although both approaches can accelerate and facilitate the interpretation process, they can by no means replace the interpreter. Interpreter “grayware” includes the incorporation and validation of depositional, diagenetic, and tectonic deformation models, the integration of rock physics systematics, and the recognition of unanticipated opportunities and hazards. This book is written to accompany and complement the 2018 SEG Distinguished Instructor Short Course that provides a rapid overview of how 3D seismic attributes provide a framework for data integration over the life of the oil and gas field. Key concepts are illustrated by example, showing modern workflows based on interactive interpretation and display as well as those aided by machine learning.




Interactive Data Processing and 3D Visualization of the Solid Earth


Book Description

This book presents works detailing the application of processing and visualization techniques for analyzing the Earth’s subsurface. The topic of the book is interactive data processing and interactive 3D visualization techniques used on subsurface data. Interactive processing of data together with interactive visualization is a powerful combination which has in the recent years become possible due to hardware and algorithm advances in. The combination enables the user to perform interactive exploration and filtering of datasets while simultaneously visualizing the results so that insights can be made immediately. This makes it possible to quickly form hypotheses and draw conclusions. Case studies from the geosciences are not as often presented in the scientific visualization and computer graphics community as e.g., studies on medical, biological or chemical data. This book will give researchers in the field of visualization and computer graphics valuable insight into the open visualization challenges in the geosciences, and how certain problems are currently solved using domain specific processing and visualization techniques. Conversely, readers from the geosciences will gain valuable insight into relevant visualization and interactive processing techniques. Subsurface data has interesting characteristics such as its solid nature, large range of scales and high degree of uncertainty, which makes it challenging to visualize with standard methods. It is also noteworthy that parallel fields of research have taken place in geosciences and in computer graphics, with different terminology when it comes to representing geometry, describing terrains, interpolating data and (example-based) synthesis of data. The domains covered in this book are geology, digital terrains, seismic data, reservoir visualization and CO2 storage. The technologies covered are 3D visualization, visualization of large datasets, 3D modelling, machine learning, virtual reality, seismic interpretation and multidisciplinary collaboration. People within any of these domains and technologies are potential readers of the book.




Advanced Methods for Interpreting Geological and Geophysical Data


Book Description

The introduction and application of advanced geological and geophysical methods can solve many problems related to geoscience. This Research Topic gives a thorough treatment of the interpretation of geological and geophysical data through advanced techniques and integrated approaches. It aims to create a more reliable integration of various geological and geophysical data in an exploration and new findings context weighing the strengths and limitations of the various methods in order to develop geophysical and geological models. It will also focus on the interpretation techniques for evaluating structural and sedimentological (stratigraphical) processes with applications within resource exploration, geohazards, seismology, seabed ecology and global climate.




The Art and Science of Seismic Interpretation


Book Description

This book demystifies that art and science of seismic interpretation for those with and without formal geophysical training. From geologists to managers and investors, The Art and Science of Seismic Interpretation is a guide to what seismic data is, how it is interpreted, and what it can deliver.




Proceedings of the International Field Exploration and Development Conference 2020


Book Description

This book is a compilation of selected papers from the 10th International Field Exploration and Development Conference (IFEDC 2020). The proceedings focuses on Reservoir Surveillance and Management, Reservoir Evaluation and Dynamic Description, Reservoir Production Stimulation and EOR, Ultra-Tight Reservoir, Unconventional Oil and Gas Resources Technology, Oil and Gas Well Production Testing, Geomechanics. The conference not only provides a platform to exchanges experience, but also promotes the development of scientific research in oil & gas exploration and production. The main audience for the work includes reservoir engineer, geological engineer, enterprise managers senior engineers as well as professional students.




Modern Singular Spectral-Based Denoising and Filtering Techniques for 2D and 3D Reflection Seismic Data


Book Description

This book discusses the latest advances in singular spectrum-based algorithms for seismic data processing, providing an update on recent developments in this field. Over the past few decades, researchers have extensively studied the application of the singular spectrum-based time and frequency domain eigen image methods, singular spectrum analysis (SSA) and multichannel SSA for various geophysical data. This book addresses seismic reflection signals, which represent the amalgamated signals of several unwanted signals/noises, such as ground roll, diffractions etc. Decomposition of such non-stationary and erratic field data is one of the multifaceted tasks in seismic data processing. This volume also includes comprehensive methodological and parametric descriptions, testing on appropriately generated synthetic data, as well as comparisons between time and frequency domain algorithms and their applications to the field data on 1D, 2D, 3D and 4D data sets. Lastly, it features an exclusive chapter with MATLAB coding for SSA.




Anisotropy and Microseismics: Theory and Practice


Book Description

Downhole microseismic monitoring of stimulation and production of unconventional reservoirs has resulted in renewed industry interest in seismic anisotropy. This occurred not only because anisotropy of hydrocarbon-bearing shales is among the strongest in rocks but also because downhole microseismics shifts the focus from the standard exploration of P-waves to shear waves. The consequences of the difference in wave type are profound for geophysicists because everyone involved - from theoreticians to developers and users of microseismic data-processing software - must be aware of shear-wave splitting, singularities, and multivalued wavefronts, which have been largely irrelevant for P-waves propagating in relatively simple geologic settings. Anisotropy and Microseismics leads readers on a path of discovery of rarely examined wave phenomena and their possible usage. Most of the chapters begin by formulating a question, followed by explanations of what is exciting about it, where the mystery might lie, and what could be the potential value of answering the question. Importantly, the findings entail useful applications, as showcased by the unmistakably practical flavor of the chapters on microseismic event location, moment tensor inversion, and imaging. As an investigation of microseismic methodologies and techniques is conducted, it often yields unexpected results.




Understanding Amplitudes


Book Description

Elementary, conceptual, and easy to read, this book describes the methods and techniques used to estimate rock properties from seismic data, based on a sound understanding of the elastic properties of materials and rocks and how the amplitudes of seismic reflections change with those properties. By examining the recorded seismic amplitudes in some detail, we can deduce properties beyond the basic geological structure of the subsurface. We can, using AVO and other amplitude techniques, characterize rocks and the reservoirs inside them with some degree of qualitative, and even quantitative, detail. Mathematics is not ignored, but is kept to a minimum. Intended for geophysicists, seismic acquisition specialists, processors, and interpreters, even those with little previous exposure to ‘quantitative interpretation’, ‘interpretive processing’ or ‘advanced seismic analysis’, this book also would be appropriate for geologists, engineers, and technicians who are familiar with the concepts but need a methodical review as well as managers and businesspeople who would like to obtain an understanding of these concepts.