Radiobiology for the Radiologist


Book Description

In print since 1972, this seventh edition of Radiobiology for the Radiologist is the most extensively revised to date. It consists of two sections, one for those studying or practicing diagnostic radiolo, nuclear medicine and radiation oncology; the other for those engaged in the study or clinical practice of radiation oncology--a new chapter, on radiologic terrorism, is specifically for those in the radiation sciences who would manage exposed individuals in the event of a terrorist event. The 17 chapters in Section I represent a general introduction to radiation biology and a complete, self-contained course especially for residents in diagnostic radiology and nuclear medicine that follows the Syllabus in Radiation Biology of the RSNA. The 11 chapters in Section II address more in-depth topics in radiation oncology, such as cancer biology, retreatment after radiotherapy, chemotherapeutic agents and hyperthermia. Now in full color, this lavishly illustrated new edition is replete with tables and figures that underscore essential concepts. Each chapter concludes with a "summary of pertinent conclusions" to facilitate quick review and help readers retain important information.




Handbook of Radiobiology


Book Description

This handbook presents the most current information on the effects of ionizing radiation on mammalian cells, with emphasis on human tissues. The dose-effect relationship is emphasized in a quantitative manner. The book contains up-to-date data on the late effects of low levels of radiation on humans. It also provides some of the late consequences of radiation therapy detected among cancer survivors.




Handbook of Radiobiology


Book Description

Radiobiology, also known as radiation biology, is a field of clinical and basic medical sciences that involves the study of the action of ionising radiation on living things. This handbook is a complete guide to radiobiology for postgraduate students. Beginning with an overview of human biology and radiation physics, the following chapters explain the interaction of radiation with cells, its beneficial damage to cancer cells, and adverse effects on normal cells and organs. The final sections of the book cover time, dose and fractionation models, and radiation safety and protection. Enhanced by images and tables, this useful reference text is presented in a logical format with simple terms to assist learning and understanding. Key Points Complete guide to radiobiology for postgraduate students Covers beneficial damage to cancer cells and adverse effects on normal cells Explains time, dose and fractionation models Logical, easy to understand format




Handbook of Radiation Oncology


Book Description

Whether you are a practicing radiation oncologist or a student of medicine, nursing, physics, dosimetry, or therapy, this handbook is a valuable resource covering the issues most pertinent to patients undergoing radiation therapy. Handbook of Radation Oncology covers general oncologic principles, workup, staging, and multidisciplinary aspects of treatment, basic principles of physics and radiobiology, and specific technologies including brachytherapy, radiosurgery, and unsealed sources.




Handbook of Radiotherapy Physics


Book Description

From background physics and biological models to the latest imaging and treatment modalities, the Handbook of Radiotherapy Physics: Theory and Practice covers all theoretical and practical aspects of radiotherapy physics. In this comprehensive reference, each part focuses on a major area of radiotherapy, beginning with an introduction by the




Radiation Oncology Physics


Book Description

This publication is aimed at students and teachers involved in teaching programmes in field of medical radiation physics, and it covers the basic medical physics knowledge required in the form of a syllabus for modern radiation oncology. The information will be useful to those preparing for professional certification exams in radiation oncology, medical physics, dosimetry or radiotherapy technology.




Handbook of Radiotherapy Physics


Book Description

From the essential background physics and radiobiology to the latest imaging and treatment modalities, the updated second edition of Handbook of Radiotherapy Physics: Theory & Practice covers all aspects of the subject. In Volume 1, Part A includes the Interaction of Radiation with Matter (charged particles and photons) and the Fundamentals of Dosimetry with an extensive section on small-field physics. Part B covers Radiobiology with increased emphasis on hypofractionation. Part C describes Equipment for Imaging and Therapy including MR-guided linear accelerators. Part D on Dose Measurement includes chapters on ionisation chambers, solid-state detectors, film and gels, as well as a detailed description and explanation of Codes of Practice for Reference Dose Determination including detector correction factors in small fields. Part E describes the properties of Clinical (external) Beams. The various methods (or ‘algorithms’) for Computing Doses in Patients irradiated by photon, electron and proton beams are described in Part F with increased emphasis on Monte-Carlo-based and grid-based deterministic algorithms. In Volume 2, Part G covers all aspects of Treatment Planning including CT-, MR- and Radionuclide-based patient imaging, Intensity-Modulated Photon Beams, Electron and Proton Beams, Stereotactic and Total Body Irradiation and the use of the dosimetric and radiobiological metrics TCP and NTCP for plan evaluation and optimisation. Quality Assurance fundamentals with application to equipment and processes are covered in Part H. Radionuclides, equipment and methods for Brachytherapy and Targeted Molecular Therapy are covered in Parts I and J, respectively. Finally, Part K is devoted to Radiation Protection of the public, staff and patients. Extensive tables of Physical Constants, Photon, Electron and Proton Interaction data, and typical Photon Beam and Radionuclide data are given in Part L. Edited by recognised authorities in the field, with individual chapters written by renowned specialists, this second edition of Handbook of Radiotherapy Physics provides the essential up-to-date theoretical and practical knowledge to deliver safe and effective radiotherapy. It will be of interest to clinical and research medical physicists, radiation oncologists, radiation technologists, PhD and Master’s students.




Pocket Radiation Oncology


Book Description

Designed for portability and quick reference, Pocket Radiation Oncology, 2nd Edition, provides the essential information needed by practitioners and trainees on a daily basis (and for oral boards!). Edited by Drs. Chad Tang and Ahsan Farooqi, and written by physicians at the MD Anderson Cancer Center, this fully updated volume provides a concise and focused review of all areas of radiation oncology in one easy-to-navigate, pocket-sized notebook.




Carbon-Ion Radiotherapy


Book Description

This book serves as a practical guide for the use of carbon ions in cancer radiotherapy. On the basis of clinical experience with more than 7,000 patients with various types of tumors treated over a period of nearly 20 years at the National Institute of Radiological Sciences, step-by-step procedures and technological development of this modality are highlighted. The book is divided into two sections, the first covering the underlying principles of physics and biology, and the second section is a systematic review by tumor site, concentrating on the role of therapeutic techniques and the pitfalls in treatment planning. Readers will learn of the superior outcomes obtained with carbon-ion therapy for various types of tumors in terms of local control and toxicities. It is essential to understand that the carbon-ion beam is like a two-edged sword: unless it is used properly, it can increase the risk of severe injury to critical organs. In early series of dose-escalation studies, some patients experienced serious adverse effects such as skin ulcers, pneumonitis, intestinal ulcers, and bone necrosis, for which salvage surgery or hospitalization was required. To preclude such detrimental results, the adequacy of therapeutic techniques and dose fractionations was carefully examined in each case. In this way, significant improvements in treatment results have been achieved and major toxicities are no longer observed. With that knowledge, experts in relevant fields expand upon techniques for treatment delivery at each anatomical site, covering indications and optimal treatment planning. With its practical focus, this book will benefit radiation oncologists, medical physicists, medical dosimetrists, radiation therapists, and senior nurses whose work involves radiation therapy, as well as medical oncologists and others who are interested in radiation therapy.




Khan's Lectures: Handbook of the Physics of Radiation Therapy


Book Description

Khan's Lectures: Handbook of the Physics of Radiation Therapy will provide a digest of the material contained in The Physics of Radiation Therapy. Lectures will be presented somewhat similar to a PowerPoint format, discussing key points of individual chapters. Selected diagrams from the textbook will be used to initiate the discussion. New illustrations will used, wherever needed, to enhance the understanding of important concepts. Discussion will be condensed and often bulleted. Theoretical details will be referred to the textbook and the cited literature. A problem set (practice questions) will be provided at the end of each chapter topic.