Handbook of Real-World Applications in Modeling and Simulation


Book Description

Introduces various modeling and simulation methods and paradigms that are used to explain and solve the predominant challenges facing society Handbook of Real-World Applications in Modeling and Simulation provides a thorough explanation of modeling and simulation in the most useful, current, and predominant applied areas of transportation, homeland security, medicine, operational research, military science, and business modeling. Offering a cutting-edge and accessible presentation, this book discusses how and why the presented domains have become leading applications of modeling and simulation techniques. Contributions from leading academics and researchers integrate modeling and simulation theories, methods, and data to analyze challenges that involve technological and social issues. The book begins with an introduction that explains why modeling and simulation is a reliable analysis assessment tool for complex systems problems. Subsequent chapters provide an orientation to various modeling and simulation methods and paradigms that are used to explain and solve the predominant challenges across real-world applied domains. Additionally, the handbook: Provides a practical one-stop reference on modeling and simulation and contains an accessible introduction to key concepts and techniques Introduces, trains, and prepares readers from statistics, mathematics, engineering, computer science, economics, and business to use modeling and simulation in their studies and research Features case studies that are representative of fundamental areas of multidisciplinary studies and provides a concise look at the key concepts of modeling and simulation Contains a collection of original ideas on modeling and simulation to help academics and practitioners develop a multifunctional perspective Self-contained chapters offer a comprehensive approach to explaining each respective domain and include sections that explore the related history, theory, modeling paradigms, and case studies. Key terms and techniques are clearly outlined, and exercise sets allow readers to test their comprehension of the presented material. Handbook of Real-World Applications in Modeling and Simulation is an essential reference for academics and practitioners in the areas of operations research, business, management science, engineering, statistics, mathematics, and computer science. The handbook is also a suitable supplement for courses on modeling and simulation at the graduate level.




Handbook of Simulation


Book Description

Dieses Buch ist eine unschätzbare Informationsquelle für alle Ingenieure, Designer, Manager und Techniker bei Entwicklung, Studium und Anwendung einer großen Vielzahl von Simulationstechniken. Es vereint die Arbeit internationaler Simulationsexperten aus Industrie und Forschung. Alle Aspekte der Simulation werden in diesem umfangreichen Nachschlagewerk abgedeckt. Der Leser wird vertraut gemacht mit den verschiedenen Techniken von Industriesimulationen sowie mit Einsatz, Anwendungen und Entwicklungen. Neueste Fortschritte wie z.B. objektorientierte Programmierung werden ebenso behandelt wie Richtlinien für den erfolgreichen Umgang mit simulationsgestützten Prozessen. Auch gibt es eine Liste mit den wichtigsten Vertriebs- und Zulieferadressen. (10/98)




Guide to Modeling and Simulation of Systems of Systems


Book Description

This user’s reference is a companion to the separate book also titled “Guide to Modelling and Simulation of Systems of Systems.” The principal book explicates integrated development environments to support virtual building and testing of systems of systems, covering in some depth the MS4 Modelling EnvironmentTM. This user’s reference provides a quick reference and exposition of the various concepts and functional features covered in that book. The topics in the user’s reference are grouped in alignment with the workflow displayed on the MS4 Modeling EnvironmentTM launch page, under the headings Atomic Models, System Entity Structure, Pruning SES, and Miscellaneous. For each feature, the reference discusses why we use it, when we should use it, and how to use it. Further comments and links to related features are also included.




Principles of Modeling and Simulation


Book Description

Explores wide-ranging applications of modeling and simulation techniques that allow readers to conduct research and ask "What if?" Principles of Modeling and Simulation: A Multidisciplinary Approach is the first book to provide an introduction to modeling and simulation techniques across diverse areas of study. Numerous researchers from the fields of social science, engineering, computer science, and business have collaborated on this work to explore the multifaceted uses of computational modeling while illustrating their applications in common spreadsheets. The book is organized into three succinct parts: Principles of Modeling and Simulation provides a brief history of modeling and simulation, outlines its many functions, and explores the advantages and disadvantages of using models in problem solving. Two major reasons to employ modeling and simulation are illustrated through the study of a specific problem in conjunction with the use of related applications, thus gaining insight into complex concepts. Theoretical Underpinnings examines various modeling techniques and introduces readers to two significant simulation concepts: discrete event simulation and simulation of continuous systems. This section details the two primary methods in which humans interface with simulations, and it also distinguishes the meaning, importance, and significance of verification and validation. Practical Domains delves into specific topics related to transportation, business, medicine, social science, and enterprise decision support. The challenges of modeling and simulation are discussed, along with advanced applied principles of modeling and simulation such as representation techniques, integration into the application infrastructure, and emerging technologies. With its accessible style and wealth of real-world examples, Principles of Modeling and Simulation: A Multidisciplinary Approach is a valuable book for modeling and simulation courses at the upper-undergraduate and graduate levels. It is also an indispensable reference for researchers and practitioners working in statistics, mathematics, engineering, computer science, economics, and the social sciences who would like to further develop their understanding and knowledge of the field.




Handbook of Monte Carlo Methods


Book Description

A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.




Engineering Emergence


Book Description

This book examines the nature of emergence in context of man-made (i.e. engineered) systems, in general, and system of systems engineering applications, specifically. It investigates emergence to interrogate or explore the domain space from a modeling and simulation perspective to facilitate understanding, detection, classification, prediction, control, and visualization of the phenomenon. Written by leading international experts, the text is the first to address emergence from an engineering perspective. "System engineering has a long and proud tradition of establishing the integrative view of systems. The field, however, has not always embraced and assimilated well the lessons and implications from research on complex adaptive systems. As the editors’ note, there have been no texts on Engineering Emergence: Principles and Applications. It is therefore especially useful to have this new, edited book that pulls together so many of the key elements, ranging from the theoretical to the practical, and tapping into advances in methods, tools, and ways to study system complexity. Drs. Rainey and Jamshidi are to be congratulated both for their vision of the book and their success in recruiting contributors with so much to say. Most notable, however, is that this is a book with engineering at its core. It uses modeling and simulation as the language in which to express principles and insights in ways that include tight thinking and rigor despite dealing with notably untidy and often surprising phenomena." — Paul K. Davis, RAND and Frederick S. Pardee RAND Graduate School The first chapter is an introduction and overview to the text. The book provides 12 chapters that have a theoretical foundation for this subject. Includes 7 specific example chapters of how various modeling and simulation paradigms/techniques can be used to investigate emergence in an engineering context to facilitate understanding, detection, classification, prediction, control and visualization of emergent behavior. The final chapter offers lessons learned and the proposed way-ahead for this discipline.




Handbook of Dynamic Data Driven Applications Systems


Book Description

This Second Volume in the series Handbook of Dynamic Data Driven Applications Systems (DDDAS) expands the scope of the methods and the application areas presented in the first Volume and aims to provide additional and extended content of the increasing set of science and engineering advances for new capabilities enabled through DDDAS. The methods and examples of breakthroughs presented in the book series capture the DDDAS paradigm and its scientific and technological impact and benefits. The DDDAS paradigm and the ensuing DDDAS-based frameworks for systems’ analysis and design have been shown to engender new and advanced capabilities for understanding, analysis, and management of engineered, natural, and societal systems (“applications systems”), and for the commensurate wide set of scientific and engineering fields and applications, as well as foundational areas. The DDDAS book series aims to be a reference source of many of the important research and development efforts conducted under the rubric of DDDAS, and to also inspire the broader communities of researchers and developers about the potential in their respective areas of interest, of the application and the exploitation of the DDDAS paradigm and the ensuing frameworks, through the examples and case studies presented, either within their own field or other fields of study. As in the first volume, the chapters in this book reflect research work conducted over the years starting in the 1990’s to the present. Here, the theory and application content are considered for: Foundational Methods Materials Systems Structural Systems Energy Systems Environmental Systems: Domain Assessment & Adverse Conditions/Wildfires Surveillance Systems Space Awareness Systems Healthcare Systems Decision Support Systems Cyber Security Systems Design of Computer Systems The readers of this book series will benefit from DDDAS theory advances such as object estimation, information fusion, and sensor management. The increased interest in Artificial Intelligence (AI), Machine Learning and Neural Networks (NN) provides opportunities for DDDAS-based methods to show the key role DDDAS plays in enabling AI capabilities; address challenges that ML-alone does not, and also show how ML in combination with DDDAS-based methods can deliver the advanced capabilities sought; likewise, infusion of DDDAS-like approaches in NN-methods strengthens such methods. Moreover, the “DDDAS-based Digital Twin” or “Dynamic Digital Twin”, goes beyond the traditional DT notion where the model and the physical system are viewed side-by-side in a static way, to a paradigm where the model dynamically interacts with the physical system through its instrumentation, (per the DDDAS feed-back control loop between model and instrumentation).




The Digital Patient


Book Description

A modern guide to computational models and constructive simulation for personalized patient care using the Digital Patient The healthcare industry’s emphasis is shifting from merely reacting to disease to preventing disease and promoting wellness. Addressing one of the more hopeful Big Data undertakings, The Digital Patient: Advancing Healthcare, Research, and Education presents a timely resource on the construction and deployment of the Digital Patient and its effects on healthcare, research, and education. The Digital Patient will not be constructed based solely on new information from all the “omics” fields; it also includes systems analysis, Big Data, and the various efforts to model the human physiome and represent it virtually. The Digital Patient will be realized through the purposeful collaboration of patients as well as scientific, clinical, and policy researchers. The Digital Patient: Advancing Healthcare, Research, and Education addresses the international research efforts that are leading to the development of the Digital Patient, the wealth of ongoing research in systems biology and multiscale simulation, and the imminent applications within the domain of personalized healthcare. Chapter coverage includes: The visible human The physiological human The virtual human Research in systems biology Multi-scale modeling Personalized medicine Self-quantification Visualization Computational modeling Interdisciplinary collaboration The Digital Patient: Advancing Healthcare, Research, and Education is a useful reference for simulation professionals such as clinicians, medical directors, managers, simulation technologists, faculty members, and educators involved in research and development in the life sciences, physical sciences, and engineering. The book is also an ideal supplement for graduate-level courses related to human modeling, simulation, and visualization.




Modeling and Simulation for Analyzing Global Events


Book Description

one-of-a-kind introduction to the theory and application of modeling and simulation techniques in the realm of international studies Modeling and Simulation for Analyzing Global Events provides an orientation to the theory and application of modeling and simulation techniques in social science disciplines. This book guides readers in developing quantitative and numeric representations of real-world events based on qualitative analysis. With an emphasis on gathering and mapping empirical data, the authors detail the steps needed for accurately analyzing global events and outline the selection and construction of the best model for understanding the event¿s data. Providing a theoretical foundation while also illustrating modern examples, the book contains three parts: Advancing Global Studies—introduces the what, when, and why of modeling and simulation and also explores its brief history, various uses, and some of the advantages and disadvantages of modeling and simulation in problem solving. In addition, the differences in qualitative and quantitative research methods, mapping data, and conducting model validation are also discussed. Modeling Paradigms—examines various methods of modeling including system dynamics, agent-based modeling, social network modeling, and game theory. This section also explores the theory and construction of these modeling paradigms, the fundamentals for their application, and various contexts for their use. Modeling Global Events—applies the modeling paradigms to four real-world events that are representative of several fundamental areas of social science studies: internal commotion within an anarchic state, a multi-layered study of the Solidarity movement in Poland, uni-lateral military intervention, and the issue of compellence and deterrence during a national security crisis. Modeling and Simulation for Analyzing Global Events is an excellent book for statistics, engineering, computer science, economics, and social sciences courses on modeling and simulation at the upper-undergraduate and graduate levels. It is also an insightful reference for professionals who would like to develop modeling and simulation skills for analyzing and communicating human behavior observed in real-world events and complex global case studies.




Handbook of Probabilistic Models


Book Description

Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more. - Explains the application of advanced probabilistic models encompassing multidisciplinary research - Applies probabilistic modeling to emerging areas in engineering - Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems