Handbook of Research on Functional Materials


Book Description

Handbook of Research on Functional Materials: Principles, Capabilities and Limitations covers a broad range of modern materials and provides industry professionals and researchers in polymer science and technology with a single, comprehensive book summarizing all aspects involved in the modern materials production chain. The book focuses on industr




Functional Materials


Book Description

The world is currently facing the urgent and demanding challenges of saving and utilizing energy as efficiently as possible. Materials science, where chemistry meets physics, has garnered a great deal of attention because of its versatile techniques for designing and producing new, desired materials enabling energy storage and conversion. This book is a comprehensive survey of the research on such materials. Unlike a monograph or a review book, it covers a wide variety of compounds, details diverse study methodologies, and spans different scientific fields. It contains cutting-edge research in chemistry and physics from the interdisciplinary team of Ehime University (Japan), the members of which are currently broadening the horizon of materials sciences through their own ideas, tailored equipment, and state-of-the-art techniques. Edited by Toshio Naito, a prominent materials scientist, this book will appeal to anyone interested in solid-state chemistry, organic and inorganic semiconductors, low-temperature physics, or the development of functional materials, including advanced undergraduate- and graduate-level students of solid-state properties and researchers in metal-complex science, materials science, chemistry, and physics, especially those with an interest in (semi)conducting and/or magnetic materials for energy storage and conversion.




Handbook of Research on Advanced Functional Materials for Orthopedic Applications


Book Description

Scaffold bone replacements are a safe and effective way to cure bone abnormalities, and porous scaffolds can be manufactured using additive manufacturing technology. When scaffolds are implanted in a damaged location, they quickly connect to the host tissue and integrate, stimulating bone production and development. The qualities of porous titanium must be matched to the properties of human bones (i.e., age, sex, and hormones). Using subtractive manufacturing, it is extremely difficult to create the complicated porous structure necessary for the desired characteristic. The Handbook of Research on Advanced Functional Materials for Orthopedic Applications highlights current research pertinent to the orthopedic applications of additive-produced scaffolds in order to consider the latest breakthroughs in the synthesis and multifunctional applications of scaffolds. Covering key topics such as tissue, additive manufacturing, and biomaterial, this major reference work is ideal for industry professionals, engineers, researchers, academicians, practitioners, scholars, instructors, and students.




Handbook of Magnetic Materials


Book Description

Handbook of Magnetic Materials, Volume 29, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors on topics such as spin-orbit torque. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Magnetic Materials series




Springer Handbook of Materials Data


Book Description

The second edition of this well-received handbook is the most concise yet comprehensive compilation of materials data. The chapters provide succinct descriptions and summarize essential and reliable data for various types of materials. The information is amply illustrated with 900 tables and 1050 figures selected primarily from well-established data collections, such as Landolt-Börnstein, which is now part of the SpringerMaterials database. The new edition of the Springer Handbook of Materials Data starts by presenting the latest CODATA recommended values of the fundamental physical constants and provides comprehensive tables of the physical and physicochemical properties of the elements. 25 chapters collect and summarize the most frequently used data and relationships for numerous metals, nonmetallic materials, functional materials and selected special structures such as liquid crystals and nanostructured materials. Along with careful updates to the content and the inclusion of timely and extensive references, this second edition includes new chapters on polymers, materials for solid catalysts and low-dimensional semiconductors. This handbook is an authoritative reference resource for engineers, scientists and students engaged in the vast field of materials science.




Springer Handbook of Condensed Matter and Materials Data


Book Description

Springer Handbook of Condensed Matter and Materials Data provides a concise compilation of data and functional relationships from the fields of solid-state physics and materials in this 1200 page volume. The data, encapsulated in 914 tables and 1025 illustrations, have been selected and extracted primarily from the extensive high-quality data collection Landolt-Börnstein and also from other systematic data sources and recent publications of physical and technical property data. Many chapters are authored by Landolt-Börnstein editors, including the prominent Springer Handbook editors, W. Martienssen and H. Warlimont themselves. The Handbook is designed to be useful as a desktop reference for fast and easy retrieval of essential and reliable data in the lab or office. References to more extensive data sources are also provided in the book and by interlinking to the relevant sources on the enclosed CD-ROM. Physicists, chemists and engineers engaged in fields of solid-state sciences and materials technologies in research, development and application will appreciate the ready access to the key information coherently organized within this wide-ranging Handbook. From the reviews: "...this is the most complete compilation I have ever seen... When I received the book, I immediately searched for data I never found elsewhere..., and I found them rapidly... No doubt that this book will soon be in every library and on the desk of most solid state scientists and engineers. It will never be at rest." -Physicalia Magazine




Handbook of Materials Characterization


Book Description

This book focuses on the widely used experimental techniques available for the structural, morphological, and spectroscopic characterization of materials. Recent developments in a wide range of experimental techniques and their application to the quantification of materials properties are an essential side of this book. Moreover, it provides concise but thorough coverage of the practical and theoretical aspects of the analytical techniques used to characterize a wide variety of functional nanomaterials. The book provides an overview of widely used characterization techniques for a broad audience: from beginners and graduate students, to advanced specialists in both academia and industry.




Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications


Book Description

The design and study of materials is a pivotal component to new discoveries in the various fields of science and technology. By better understanding the components and structures of materials, researchers can increase its applications across different industries. Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications is a compendium of the latest academic material on investigations, technologies, and techniques pertaining to analyzing the synthesis and design of new materials. Through its broad and extensive coverage on a variety of crucial topics, such as nanomaterials, biomaterials, and relevant computational methods, this multi-volume work is an essential reference source for engineers, academics, researchers, students, professionals, and practitioners seeking innovative perspectives in the field of materials science and engineering.




The Handbook of Group Research and Practice


Book Description

Organized into six practical sections relating theory to application from an historical perspective, this text offers contributions from international scholars and practitioners who reflect the diversity of this field.




Active Materials


Book Description

What are active materials? This book aims to introduce and redefine conceptions of matter by considering materials as entities that ‘sense’ and respond to their environment. By examining the modeling of, the experiments on, and the construction of these materials, and by developing a theory of their structure, their collective activity, and their functionality, this volume identifies and develops a novel scientific approach to active materials. Moreover, essays on the history and philosophy of metallurgy, chemistry, biology, and materials science provide these various approaches to active materials with a historical and cultural context. The interviews with experts from the natural sciences included in this volume develop new understandings of ‘active matter’ and active materials in relation to a range of research objects and from the perspective of different scientific disciplines, including biology, physics, chemistry, and materials science. These insights are complemented by contributions on the activity of matter and materials from the humanities and the design field. Discusses the mechanisms of active materials and their various conceptualizations in materials science. Redefines conceptions of active materials through interviews with experts from the natural sciences. Contextualizes, historizes, and reflects on different notions of matter/materials and activity through contributions from the humanities. A highly interdisciplinary approach to a cutting-edge research topic, with contributions from both the sciences and the humanities.