Handbook of Research on Hydroinformatics: Technologies, Theories and Applications


Book Description

"This book provides relevant theoretical frameworks and empirical research findings in the area hydroinformatics to assist professionals to improve their understanding of the development and use of decision support tools to support decision making and integrated water management at different organizational levels and domains"--Provided by publisher.




Handbook of Research on Hydroinformatics


Book Description

"This book provides relevant theoretical frameworks and empirical research findings in the area hydroinformatics to assist professionals to improve their understanding of the development and use of decision support tools to support decision making and integrated water management at different organizational levels and domains"--Provided by publisher.




Handbook of HydroInformatics


Book Description

Handbook of HydroInformatics: Volume I: Classic Soft-Computing Techniques explores the difference between traditional computing, also known as hard computing and soft computing, which is based on the importance given to issues like precision, certainty and rigor. Chapters define fundamentally classic soft-computing techniques such as Artificial Neural Network, Fuzzy Logic, Genetic Algorithm, Supporting Vector Machine, Ant-Colony Based Simulation, Bat Algorithm, Decision Tree Algorithm, Firefly Algorithm, Fish Habitat Analysis, Game Theory, Hybrid Cuckoo-Harmony Search Algorithm, Honey-Bee Mating Optimization, Imperialist Competitive Algorithm, Relevance Vector Machine, and more. This volume is a true interdisciplinary work that will be useful to post graduates and above in the fields of Artificial Intelligence, Computer Science, Mathematical Science, Applied Science, Earth and Geoscience, Geography, Civil Engineering, Engineering, Water Science, Atmospheric Science, Social Science, Environment Science, Natural Resources and Chemical Engineering. Contains contributions from global contributors in the fields of data management research, climate change and resilience, insufficient data problem, and more Presents applied examples and case studies in each chapter, providing the reader with real-world scenarios for comparison Defines classic soft-computing techniques that are necessary for a range of disciplines




Handbook of HydroInformatics


Book Description

Advanced Machine Learning Techniques includes the theoretical foundations of modern machine learning, as well as advanced methods and frameworks used in modern machine learning. Handbook of HydroInformatics, Volume II: Advanced Machine Learning Techniques presents both the art of designing good learning algorithms, as well as the science of analyzing an algorithm's computational and statistical properties and performance guarantees. The global contributors cover theoretical foundational topics such as computational and statistical convergence rates, minimax estimation, and concentration of measure as well as advanced machine learning methods, such as nonparametric density estimation, nonparametric regression, and Bayesian estimation; additionally, advanced frameworks such as privacy, causality, and stochastic learning algorithms are also included. Lastly, the volume presents Cloud and Cluster Computing, Data Fusion Techniques, Empirical Orthogonal Functions and Teleconnection, Internet of Things, Kernel-Based Modeling, Large Eddy Simulation, Patter Recognition, Uncertainty-Based Resiliency Evaluation, and Volume-Based Inverse Mode. This is an interdisciplinary book, and the audience includes postgraduates and early-career researchers interested in: Computer Science, Mathematical Science, Applied Science, Earth and Geoscience, Geography, Civil Engineering, Engineering, Water Science, Atmospheric Science, Social Science, Environment Science, Natural Resources, Chemical Engineering. Key insights from 24 contributors in the fields of data management research, climate change and resilience, insufficient data problem, etc. Offers applied examples and case studies in each chapter, providing the reader with real world scenarios for comparison. Defines both the designing of good learning algorithms, as well as the science of analyzing an algorithm's computational and statistical properties and performance guarantees.




Handbook of HydroInformatics


Book Description

Handbook of HydroInformatics Volume III: Water Data Management Best Practices presents the latest and most updated data processing techniques that are fundamental to Water Science and Engineering disciplines. These include a wide range of the new methods that are used in hydro-modeling such as Atmospheric Teleconnection Pattern, CONUS-Scale Hydrologic Modeling, Copula Function, Decision Support System, Downscaling Methods, Dynamic System Modeling, Economic Impacts and Models, Geostatistics and Geospatial Frameworks, Hydrologic Similarity Indices, Hydropower/Renewable Energy Models, Sediment Transport Dynamics Advanced Models, Social Data Mining, and Wavelet Transforms. This volume is an example of true interdisciplinary work. The audience includes postgraduates and above interested in Water Science, Geotechnical Engineering, Soil Science, Civil Engineering, Chemical Engineering, Computer Engineering, Engineering, Applied Science, Earth and Geoscience, Atmospheric Science, Geography, Environment Science, Natural Resources, Mathematical Science, and Social Sciences. It is a fully comprehensive handbook which provides all the information needed related to the best practices for managing water data. Contributions from global experts in the fields of data management research, climate change and resilience, insufficient data problem, etc. Thorough applied examples and case studies in each chapter, providing the reader with real world scenarios for comparison. Includes a wide range of new methods that are used in hydro-modeling, with step-by-step guides on how to use them.




Advanced Hydroinformatics


Book Description

Advanced Hydroinformatics Advanced Hydroinformatics Machine Learning and Optimization for Water Resources The rapid development of machine learning brings new possibilities for hydroinformatics research and practice with its ability to handle big data sets, identify patterns and anomalies in data, and provide more accurate forecasts. Advanced Hydroinformatics: Machine Learning and Optimization for Water Resources presents both original research and practical examples that demonstrate how machine learning can advance data analytics, accuracy of modeling and forecasting, and knowledge discovery for better water management. Volume Highlights Include: Overview of the application of artificial intelligence and machine learning techniques in hydroinformatics Advances in modeling hydrological systems Different data analysis methods and models for forecasting water resources New areas of knowledge discovery and optimization based on using machine learning techniques Case studies from North America, South America, the Caribbean, Europe, and Asia The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.




Advances in Hydroinformatics


Book Description

This book is a collection of extended papers based on presentations given during the SIMHYDRO 2014 conference, held in Sophia Antipolis in June 2014. It focuses on the modeling and simulation of fast hydraulic transients, on 3D modeling, and on uncertainties and multiphase flows. The book explores both the limitations and performance of current models and presents the latest developments based on new numerical schemes, high-performance computing, multiphysics and multiscale methods, and better interaction with field or scale model data. It addresses the interests of practitioners, stakeholders, researchers and engineers active in this field.




Hydroinformatics


Book Description

Modern hydrology is more interdisciplinary than ever. Staggering amounts and varieties of information pour in from GIS and remote sensing systems every day, and this information must be collected, interpreted, and shared efficiently. Hydroinformatics: Data Integrative Approaches in Computation, Analysis, and Modeling introduces the tools, approache




Advances in Hydroinformatics


Book Description

This book gathers a collection of extended papers based on presentations given during the SimHydro 2017 conference, held in Sophia Antipolis, Nice, France on June 14–16, 2017. It focuses on how to choose the right model in applied hydraulics and considers various aspects, including the modeling and simulation of fast hydraulic transients, 3D modeling, uncertainties and multiphase flows. The book explores both limitations and performance of current models and presents the latest developments in new numerical schemes, high-performance computing, multiphysics and multiscale methods, and better interaction with field or scale model data. It gathers the lastest theoretical and innovative developments in the modeling field and presents some of the most advance applications on various water related topics like uncertainties, flood simulation and complex hydraulic applications. Given its breadth of coverage, it addresses the needs and interests of practitioners, stakeholders, researchers and engineers alike.




Introductory Hydroinformatics


Book Description

The hydroinformatics tools viz. simulation modeling, SCADA, remote sensing and GIS, artificial intelligence etc are now a days, generally used in the planning of water based systems. These are quite young technologies, but complex and so budding engineers could keep a safe distance from these courses. This book will serve as a single textbook having comprehensive information of all above topics in a single book. In this book, a wide and varied scope of hydroinformatics is concise in the simple language for easy understanding and remembrance of the readers. The aim of this book is to introduce the budding engineers with hydroinformatics and it’s tools for planning and management of water based systems. Each chapter describes basic preliminary information about the topic. This book will be helpful to undergraduate and postgraduate engineering students in preparation of the subject and research, thus giving wider application of hydroinformatics.