Handbook of Research on Advancements of Swarm Intelligence Algorithms for Solving Real-World Problems


Book Description

The use of optimization algorithms has seen an emergence in various professional fields due to its ability to process data and information in an efficient and productive manner. Combining computational intelligence with these algorithms has created a trending subject of research on how much more beneficial intelligent-inspired algorithms can be within companies and organizations. As modern theories and applications are continually being developed in this area, professionals are in need of current research on how intelligent algorithms are advancing in the real world. TheHandbook of Research on Advancements of Swarm Intelligence Algorithms for Solving Real-World Problems is a pivotal reference source that provides vital research on the development of swarm intelligence algorithms and their implementation into current issues. While highlighting topics such as multi-agent systems, bio-inspired computing, and evolutionary programming, this publication explores various concepts and theories of swarm intelligence and outlines future directions of development. This book is ideally designed for IT specialists, researchers, academicians, engineers, developers, practitioners, and students seeking current research on the real-world applications of intelligent algorithms.




Handbook of Swarm Intelligence


Book Description

From nature, we observe swarming behavior in the form of ant colonies, bird flocking, animal herding, honey bees, swarming of bacteria, and many more. It is only in recent years that researchers have taken notice of such natural swarming systems as culmination of some form of innate collective intelligence, albeit swarm intelligence (SI) - a metaphor that inspires a myriad of computational problem-solving techniques. In computational intelligence, swarm-like algorithms have been successfully applied to solve many real-world problems in engineering and sciences. This handbook volume serves as a useful foundational as well as consolidatory state-of-art collection of articles in the field from various researchers around the globe. It has a rich collection of contributions pertaining to the theoretical and empirical study of single and multi-objective variants of swarm intelligence based algorithms like particle swarm optimization (PSO), ant colony optimization (ACO), bacterial foraging optimization algorithm (BFOA), honey bee social foraging algorithms, and harmony search (HS). With chapters describing various applications of SI techniques in real-world engineering problems, this handbook can be a valuable resource for researchers and practitioners, giving an in-depth flavor of what SI is capable of achieving.




Swarm Intelligence for Electric and Electronic Engineering


Book Description

With growing developments in artificial intelligence and focus on swarm behaviors; algorithms have been utilized in solving a variety of problems in the field of engineering. This approach has been specifically suited to face the challenges in electric and electronic engineering. Swarm Intelligence for Electric and Electronic Engineering provides an exchange of knowledge on the advances, discoveries, and improvements of swarm intelligence in electric and electronic engineering. This comprehensive collection aims to bring together new swarm-based algorithms as well as approaches to complex problems and various real-world applications.




Handbook of Research on Swarm Intelligence in Engineering


Book Description

Swarm Intelligence has recently emerged as a next-generation methodology belonging to the class of evolutionary computing. As a result, scientists have been able to explain and understand real-life processes and practices that previously remained unexplored. The Handbook of Research on Swarm Intelligence in Engineering presents the latest research being conducted on diverse topics in intelligence technologies such as Swarm Intelligence, Machine Intelligence, Optical Engineering, and Signal Processing with the goal of advancing knowledge and applications in this rapidly evolving field. The enriched interdisciplinary contents of this book will be a subject of interest to the widest forum of faculties, existing research communities, and new research aspirants from a multitude of disciplines and trades.




Handbook of Research on Computational Intelligence for Engineering, Science, and Business


Book Description

Using the same strategy for the needs of image processing and pattern recognition, scientists and researchers have turned to computational intelligence for better research throughputs and end results applied towards engineering, science, business and financial applications. Handbook of Research on Computational Intelligence for Engineering, Science, and Business discusses the computation intelligence approaches, initiatives and applications in the engineering, science and business fields. This reference aims to highlight computational intelligence as no longer limited to computing-related disciplines and can be applied to any effort which handles complex and meaningful information.




Swarm Intelligence and Bio-Inspired Computation


Book Description

Swarm Intelligence and bio-inspired computation have become increasing popular in the last two decades. Bio-inspired algorithms such as ant colony algorithms, bat algorithms, bee algorithms, firefly algorithms, cuckoo search and particle swarm optimization have been applied in almost every area of science and engineering with a dramatic increase of number of relevant publications. This book reviews the latest developments in swarm intelligence and bio-inspired computation from both the theory and application side, providing a complete resource that analyzes and discusses the latest and future trends in research directions. It can help new researchers to carry out timely research and inspire readers to develop new algorithms. With its impressive breadth and depth, this book will be useful for advanced undergraduate students, PhD students and lecturers in computer science, engineering and science as well as researchers and engineers. - Focuses on the introduction and analysis of key algorithms - Includes case studies for real-world applications - Contains a balance of theory and applications, so readers who are interested in either algorithm or applications will all benefit from this timely book.




Handbook of Research on Fireworks Algorithms and Swarm Intelligence


Book Description

""This book provides vital research on theory analysis, improvements, and applications of fireworks algorithm. While highlighting topics such as convergence rate, parameter applications, and global optimization analysis, this publication explores up-to-date progress on the specific techniques of this algorithm"--Provided by publisher"--




Handbook of Research on Design, Control, and Modeling of Swarm Robotics


Book Description

Studies on robotics applications have grown substantially in recent years, with swarm robotics being a relatively new area of research. Inspired by studies in swarm intelligence and robotics, swarm robotics facilitates interactions between robots as well as their interactions with the environment. The Handbook of Research on Design, Control, and Modeling of Swarm Robotics is a collection of the most important research achievements in swarm robotics thus far, covering the growing areas of design, control, and modeling of swarm robotics. This handbook serves as an essential resource for researchers, engineers, graduates, and senior undergraduates with interests in swarm robotics and its applications.




Fireworks Algorithm


Book Description

This book is devoted to the state-of-the-art in all aspects of fireworks algorithm (FWA), with particular emphasis on the efficient improved versions of FWA. It describes the most substantial theoretical analysis including basic principle and implementation of FWA and modeling and theoretical analysis of FWA. It covers exhaustively the key recent significant research into the improvements of FWA so far. In addition, the book describes a few advanced topics in the research of FWA, including multi-objective optimization (MOO), discrete FWA (DFWA) for combinatorial optimization, and GPU-based FWA for parallel implementation. In sequels, several successful applications of FWA on non-negative matrix factorization (NMF), text clustering, pattern recognition, and seismic inversion problem, and swarm robotics, are illustrated in details, which might shed new light on more real-world applications in future. Addressing a multidisciplinary topic, it will appeal to researchers and professionals in the areas of metahuristics, swarm intelligence, evolutionary computation, complex optimization solving, etc.




Handbook of Research on Artificial Intelligence Techniques and Algorithms


Book Description

For decades, optimization methods such as Fuzzy Logic, Artificial Neural Networks, Firefly, Simulated annealing, and Tabu search, have been capable of handling and tackling a wide range of real-world application problems in society and nature. Analysts have turned to these problem-solving techniques in the event during natural disasters and chaotic systems research. The Handbook of Research on Artificial Intelligence Techniques and Algorithms highlights the cutting edge developments in this promising research area. This premier reference work applies Meta-heuristics Optimization (MO) Techniques to real world problems in a variety of fields including business, logistics, computer science, engineering, and government. This work is particularly relevant to researchers, scientists, decision-makers, managers, and practitioners.