Handbook of Sequential Analysis


Book Description

Sequential analysis refers to the body of statistical theory and methods where the sample size may depend in a random manner on the accumulating data. A formal theory in which optimal tests are derived for simple statistical hypotheses in such a framework was developed by Abraham Wald in the early 1




Sequential Estimation


Book Description

The only comprehensive guide to the theory and practice of one oftoday's most important probabilistic techniques The past 15 years have witnessed many significant advances insequential estimation, especially in the areas of three-stage andnonparametric methodology. Yet, until now, there were no referencesdevoted exclusively to this rapidly growing statisticalfield. Sequential Estimation is the first, single-source guide to thetheory and practice of both classical and modern sequentialestimation techniques--including parametric and nonparametricmethods. Researchers in sequential analysis will appreciate theunified, logically integrated treatment of the subject, as well ascoverage of important contemporary procedures not covered in moregeneral sequential analysis texts, such as: * Shrinkage estimation * Empirical and hierarchical Bayes procedures * Multistage sampling and accelerated sampling procedures * Time-sequential estimation * Sequential estimation in finite population sampling * Reliability estimation and capture-recapture methodologiesleading to sequential tagging schemes An indispensable resource for researchers in sequential analysis,Sequential Estimation is an ideal graduate-level text as well.




Scan Statistics


Book Description

In many statistical applications, scientists have to analyze the occurrence of observed clusters of events in time or space. Scientists are especially interested in determining whether an observed cluster of events has occurred by chance if it is assumed that the events are distributed independently and uniformly over time or space. Scan statistics have relevant applications in many areas of science and technology including geology, geography, medicine, minefield detection, molecular biology, photography, quality control and reliability theory and radio-optics.




Sequential Analysis and Observational Methods for the Behavioral Sciences


Book Description

Behavioral scientists – including those in psychology, infant and child development, education, animal behavior, marketing and usability studies – use many methods to measure behavior. Systematic observation is used to study relatively natural, spontaneous behavior as it unfolds sequentially in time. This book emphasizes digital means to record and code such behavior; while observational methods do not require them, they work better with them. Key topics include devising coding schemes, training observers and assessing reliability, as well as recording, representing and analyzing observational data. In clear and straightforward language, this book provides a thorough grounding in observational methods along with considerable practical advice. It describes standard conventions for sequential data and details how to perform sequential analysis with a computer program developed by the authors. The book is rich with examples of coding schemes and different approaches to sequential analysis, including both statistical and graphical means.




Sequential Analysis and Optimal Design


Book Description

An exploration of the interrelated fields of design of experiments and sequential analysis with emphasis on the nature of theoretical statistics and how this relates to the philosophy and practice of statistics.




The Cambridge Handbook of Group Interaction Analysis


Book Description

This Handbook provides a compendium of research methods that are essential for studying interaction and communication across the behavioral sciences. Focusing on coding of verbal and nonverbal behavior and interaction, the Handbook is organized into five parts. Part I provides an introduction and historic overview of the field. Part II presents areas in which interaction analysis is used, such as relationship research, group research, and nonverbal research. Part III focuses on development, validation, and concrete application of interaction coding schemes. Part IV presents relevant data analysis methods and statistics. Part V contains systematic descriptions of established and novel coding schemes, which allows quick comparison across instruments. Researchers can apply this methodology to their own interaction data and learn how to evaluate and select coding schemes and conduct interaction analysis. This is an essential reference for all who study communication in teams and groups.




An Applied Guide to Research Designs


Book Description

The Second Edition of An Applied Guide to Research Designs offers researchers in the social and behavioral sciences guidance for selecting the most appropriate research design to apply in their study. Using consistent terminology, the authors visually present a range of research designs used in quantitative, qualitative, and mixed methods to help readers conceptualize, construct, test, and problem solve in their investigation. The Second Edition features revamped and expanded coverage of research designs, new real-world examples and references, a new chapter on action research, and updated ancillaries.




An Introduction to Sequential Monte Carlo


Book Description

This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a “Python corner,” which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.




Sequential Monte Carlo Methods in Practice


Book Description

Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.




Handbook of Survival Analysis


Book Description

Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians