Soil Mechanics and Foundation Engineering: Fundamentals and Applications


Book Description

Learn the basics of soil mechanics and foundation engineering This hands-on guide shows, step by step, how soil mechanics principles can be applied to solve geotechnical and foundation engineering problems. Presented in a straightforward, engaging style by an experienced PE, Soil Mechanics and Foundation Engineering: Fundamentals and Applications starts with the basics, assuming no prior knowledge, and gradually proceeds to more advanced topics. You will get rich illustrations, worked-out examples, and real-world case studies that help you absorb the critical points in a short time. Coverage includes: Phase relations Soil classification Compaction Effective stresses Permeability and seepage Vertical stresses under loaded areas Consolidation Shear strength Lateral earth pressures Site investigation Shallow and deep foundations Earth retaining structures Slope stability Reliability-based design




Soil Mechanics and Foundations


Book Description

Discover the principles that support the practice! With its simplicity in presentation, this text makes the difficult concepts of soil mechanics and foundations much easier to understand. The author explains basic concepts and fundamental principles in the context of basic mechanics, physics, and mathematics. From Practical Situations and Essential Points to Practical Examples, this text is packed with helpful hints and examples that make the material crystal clear.




Soil Mechanics of Earthworks, Foundations and Highway Engineering


Book Description

This is the third volume of a handbook which covers the whole field of soil mechanics, discussing deterministic and stochastic theories and methods, and showing how they can be used in conjunction with one another. The first volume discusses soil physics, while the second deals with the determination of physical characteristics of the soil. Australian Mining wrote of the Handbook ``a valuable addition to the extensive literature on the topic and will be found to be more useful than most.''The main objective of the third volume is to present solutions to the problems of engineering practice. It deals with the most important theoretical and practical problems of soil mechanics, discussing the following in detail: stability of earthworks, load-bearing capacity and settlement of shallow foundations, design of pile foundations, soil mechanics in road construction, improving the physical properties of soils, the characteristics of soil dynamics, foundations for machines and soil behaviour as affected by earthquakes. The book not only presents up-to-date deterministic methods, but also discusses solutions of probability theory in the fields of design and safety.The book is divided into six chapters covering the stability of slopes, landslides, load-bearing capacity and settlement of shallow foundations and pile foundations, soil mechanics in road construction, and the improvement of the physical characteristics of soil with special emphasis on machine foundations and earthquakes, giving detailed treatment of each subject. For example, the first chapter deals not only with the stability of slopes, but also discusses the natural and artificial effects, slope protection, filter design, stresses in embankments, and the time factor. In this way, the book gives a clear and comprehensive picture of the special fields of soil mechanics and its subjects. It is therefore emminently suitable for postgraduate engineers, and engineers working in the fields of geotechnics, earthworks, foundations, road construction, engineering geology and statistics, and the design of structures.




Soil Mechanics in Engineering Practice


Book Description

This book constitutes the definitive handbook to soil mechanics, covering in great detail such topics as: Properties of Soils, Hydraulic and Mechanical Properties of Soils, Drainage of Soils, Plastic Equilibrium in Soils, Earth Stability and Pressure of Slopes, Foundations, etc. A valuable compendium for those interested in soil mechanics, this antiquarian text contains a wealth of information still very much valuable to engineers today. Karl von Terzaghi (1883 1963) was a Czech geologist and Civil engineer, hailed as the "father of soil mechanics." This book has been elected for republication due to its educational value and is proudly republished here with an introductory biography of the author."




Fundamentals of Soil Mechanics for Sedimentary and Residual Soils


Book Description

Introducing the first integrated coverage of sedimentary and residual soil engineering Despite its prevalence in under-developed parts of the United States and most tropical and sub-tropical countries, residual soil is often characterized as a mere extension of conventional soil mechanics in many textbooks. Now, with the rapid growth of construction in these regions, it is essential to gain a fuller understanding of residual soils and their properties—one that's based on an integrated approach to the study of residual and sedimentary soils. One text puts this understanding well within reach: Fundamentals of Soil Mechanics for Sedimentary and Residual Soils. The first resource to provide equal treatment of both residual and sedimentary soils and their unique engineering properties, this skill-building guide offers: A concise introduction to basic soil mechanics, stress-strain behavior, testing, and design In-depth coverage that spans the full scope of soil engineering, from bearing capacity and foundation design to the stability of slopes A focus on concepts and principles rather than methods, helping you avoid idealized versions of soil behavior and maintain a design approach that is consistent with real soils of the natural world An abundance of worked problems throughout, demonstrating in some cases that conventional design techniques applicable to sedimentary soils are not valid for residual soils Numerous end-of-chapter exercises supported by an online solutions manual Full chapter-ending references Taken together, Fundamentals of Soil Mechanics for Sedimentary and Residual Soils is a comprehensive, balanced soil engineering sourcebook that will prove indispensable for practitioners and students in civil engineering, geotechnical engineering, structural engineering, and geology.




Handbook of Geotechnical Investigation and Design Tables


Book Description

This practical handbook of properties for soils and rock contains, in a concise tabular format, the key issues relevant to geotechnical investigations, assessments and designs in common practice. In addition, there are brief notes on the application of the tables. These data tables are compiled for experienced geotechnical professionals who require a reference document to access key information. There is an extensive database of correlations for different applications. The book should provide a useful bridge between soil and rock mechanics theory and its application to practical engineering solutions. The initial chapters deal with the planning of the geotechnical investigation, the classification of the soil and rock properties and some of the more used testing is then covered. Later chapters show the reliability and correlations that are used to convert that data in the interpretative and assessment phase of the project. The final chapters apply some of these concepts to geotechnical design. This book is intended primarily for practicing geotechnical engineers working in investigation, assessment and design, but should provide a useful supplement for postgraduate courses.




Selected Papers on Soil Mechanics


Book Description

A selection of papers by Professor AW Skempton, aiming to show his breadth of achievement in the field of soilmechanics. The chosen papers are reproduced chronologically, most of them falling into three subject groups: soil properties, stability of slopes, and foundations. This collection is useful to engineers, research workers, and students.




Foundation Engineering Handbook


Book Description

More than ten years have passed since the first edition was published. During that period there have been a substantial number of changes in geotechnical engineering, especially in the applications of foundation engineering. As the world population increases, more land is needed and many soil deposits previously deemed unsuitable for residential housing or other construction projects are now being used. Such areas include problematic soil regions, mining subsidence areas, and sanitary landfills. To overcome the problems associated with these natural or man-made soil deposits, new and improved methods of analysis, design, and implementation are needed in foundation construction. As society develops and living standards rise, tall buildings, transportation facilities, and industrial complexes are increasingly being built. Because of the heavy design loads and the complicated environments, the traditional design concepts, construction materials, methods, and equipment also need improvement. Further, recent energy and material shortages have caused additional burdens on the engineering profession and brought about the need to seek alternative or cost-saving methods for foundation design and construction.




Geotechnical Engineering


Book Description

A must have reference for any engineer involved with foundations, piers, and retaining walls, this remarkably comprehensive volume illustrates soil characteristic concepts with examples that detail a wealth of practical considerations, It covers the latest developments in the design of drilled pier foundations and mechanically stabilized earth retaining wall and explores a pioneering approach for predicting the nonlinear behavior of laterally loaded long vertical and batter piles. As complete and authoritative as any volume on the subject, it discusses soil formation, index properties, and classification; soil permeability, seepage, and the effect of water on stress conditions; stresses due to surface loads; soil compressibility and consolidation; and shear strength characteristics of soils. While this book is a valuable teaching text for advanced students, it is one that the practicing engineer will continually be taking off the shelf long after school lets out. Just the quick reference it affords to a huge range of tests and the appendices filled with essential data, makes it an essential addition to an civil engineering library.




Cellular Cofferdams


Book Description

This working manual covers everything from theory, practical design, templates, installation, filling, equipment, maintenance to removal. With the combination of the TVA Technical Monograph 75-Steel Sheet Pile Cofferdams on the Rock manual and the US Corps of Engineers manual - Theoretical Manual for Design of Cellular Sheet Pile Structures our Cellular Cofferdams handbook make for an excellent reference book. Cellular Cofferdams, the large, barrel-like, interconnected structures formed of steel sheet piling and filled with coarse soil. Generally utilized for dewatering large construction sites as well as building piers, quaywalls, bulkheads, breakwaters and artificial islands. Over the years, a few papers on design theory have come forth, but only one complete publication devoted to the entire subject.