Handbook of the Normal Distribution, Second Edition


Book Description

"Traces the historical development of the normal law. Second Edition offers a comprehensive treatment of the bivariate normal distribution--presenting entirely new material on normal integrals, asymptotic normality, the asymptotic properties of order statistics, and point estimation and statistical intervals."




Handbook of the Normal Distribution


Book Description

A collection of results relating to the normal distribution, tracing the historical development of normal law and providing a compendium of properties. The revised edition introduces the most current estimation procedures for normally distributed samples for researchers and students in theoretical and applied statistics, including expanded treatments of: bivariate normal distribution, normal integrals, Mills' ratio, asymptotic normality, point estimation, and statistical intervals. Annotation copyright by Book News, Inc., Portland, OR




Handbook of Statistical Distributions with Applications


Book Description

Easy-to-Use Reference and Software for Statistical Modeling and TestingHandbook of Statistical Distributions with Applications, Second Edition provides quick access to common and specialized probability distributions for modeling practical problems and performing statistical calculations. Along with many new examples and results, this edition inclu




The Normal Distribution


Book Description

This book is a concise presentation of the normal distribution on the real line and its counterparts on more abstract spaces, which we shall call the Gaussian distributions. The material is selected towards presenting characteristic properties, or characterizations, of the normal distribution. There are many such properties and there are numerous rel evant works in the literature. In this book special attention is given to characterizations generated by the so called Maxwell's Theorem of statistical mechanics, which is stated in the introduction as Theorem 0.0.1. These characterizations are of interest both intrin sically, and as techniques that are worth being aware of. The book may also serve as a good introduction to diverse analytic methods of probability theory. We use characteristic functions, tail estimates, and occasionally dive into complex analysis. In the book we also show how the characteristic properties can be used to prove important results about the Gaussian processes and the abstract Gaussian vectors. For instance, in Section 5.4 we present Fernique's beautiful proofs of the zero-one law and of the integrability of abstract Gaussian vectors. The central limit theorem is obtained via characterizations in Section 7.3.




Handbook of Exponential and Related Distributions for Engineers and Scientists


Book Description

The normal distribution is widely known and used by scientists and engineers. However, there are many cases when the normal distribution is not appropriate, due to the data being skewed. Rather than leaving you to search through journal articles, advanced theoretical monographs, or introductory texts for alternative distributions, the Handbook of E




Entropy-Based Parameter Estimation in Hydrology


Book Description

Since the pioneering work of Shannon in the late 1940's on the development of the theory of entropy and the landmark contributions of Jaynes a decade later leading to the development of the principle of maximum entropy (POME), the concept of entropy has been increasingly applied in a wide spectrum of areas, including chemistry, electronics and communications engineering, data acquisition and storage and retreival, data monitoring network design, ecology, economics, environmental engineering, earth sciences, fluid mechanics, genetics, geology, geomorphology, geophysics, geotechnical engineering, hydraulics, hydrology, image processing, management sciences, operations research, pattern recognition and identification, photogrammetry, psychology, physics and quantum mechanics, reliability analysis, reservoir engineering, statistical mechanics, thermodynamics, topology, transportation engineering, turbulence modeling, and so on. New areas finding application of entropy have since continued to unfold. The entropy concept is indeed versatile and its applicability widespread. In the area of hydrology and water resources, a range of applications of entropy have been reported during the past three decades or so. This book focuses on parameter estimation using entropy for a number of distributions frequently used in hydrology. In the entropy-based parameter estimation the distribution parameters are expressed in terms of the given information, called constraints. Thus, the method lends itself to a physical interpretation of the parameters. Because the information to be specified usually constitutes sufficient statistics for the distribution under consideration, the entropy method provides a quantitative way to express the information contained in the distribution.




Statistical Distributions


Book Description

This book gives a description of the group of statistical distributions that have ample application to studies in statistics and probability. Understanding statistical distributions is fundamental for researchers in almost all disciplines. The informed researcher will select the statistical distribution that best fits the data in the study at hand. Some of the distributions are well known to the general researcher and are in use in a wide variety of ways. Other useful distributions are less understood and are not in common use. The book describes when and how to apply each of the distributions in research studies, with a goal to identify the distribution that best applies to the study. The distributions are for continuous, discrete, and bivariate random variables. In most studies, the parameter values are not known a priori, and sample data is needed to estimate parameter values. In other scenarios, no sample data is available, and the researcher seeks some insight that allows the estimate of the parameter values to be gained. This handbook of statistical distributions provides a working knowledge of applying common and uncommon statistical distributions in research studies. These nineteen distributions are: continuous uniform, exponential, Erlang, gamma, beta, Weibull, normal, lognormal, left-truncated normal, right-truncated normal, triangular, discrete uniform, binomial, geometric, Pascal, Poisson, hyper-geometric, bivariate normal, and bivariate lognormal. Some are from continuous data and others are from discrete and bivariate data. This group of statistical distributions has ample application to studies in statistics and probability and practical use in real situations. Additionally, this book explains computing the cumulative probability of each distribution and estimating the parameter values either with sample data or without sample data. Examples are provided throughout to guide the reader. Accuracy in choosing and applying statistical distributions is particularly imperative for anyone who does statistical and probability analysis, including management scientists, market researchers, engineers, mathematicians, physicists, chemists, economists, social science researchers, and students in many disciplines.




Handbook of Probability


Book Description

THE COMPLETE COLLECTION NECESSARY FOR A CONCRETE UNDERSTANDING OF PROBABILITY Written in a clear, accessible, and comprehensive manner, the Handbook of Probability presents the fundamentals of probability with an emphasis on the balance of theory, application, and methodology. Utilizing basic examples throughout, the handbook expertly transitions between concepts and practice to allow readers an inclusive introduction to the field of probability. The book provides a useful format with self-contained chapters, allowing the reader easy and quick reference. Each chapter includes an introduction, historical background, theory and applications, algorithms, and exercises. The Handbook of Probability offers coverage of: Probability Space Probability Measure Random Variables Random Vectors in Rn Characteristic Function Moment Generating Function Gaussian Random Vectors Convergence Types Limit Theorems The Handbook of Probability is an ideal resource for researchers and practitioners in numerous fields, such as mathematics, statistics, operations research, engineering, medicine, and finance, as well as a useful text for graduate students.




High-Dimensional Probability


Book Description

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.




Statistical Intervals


Book Description

Presents a detailed exposition of statistical intervals and emphasizes applications in industry. The discussion differentiates at an elementary level among different kinds of statistical intervals and gives instruction with numerous examples and simple math on how to construct such intervals from sample data. This includes confidence intervals to contain a population percentile, confidence intervals on probability of meeting specified threshold value, and prediction intervals to include observation in a future sample. Also has an appendix containing computer subroutines for nonparametric statistical intervals.