Handbook of Thermoplastics Injection Mould Design


Book Description

Injection moulding is one of the most important methods of manufacturing plastics products. Through the development of sophisticated micro processor control systems, the modern injection moulding machine is capable of producing precision mouldings with close tolerances in large numbers and with excellent reproducibility. This capability, however, is often limited by the lack of a proper appreciation of mould design. The mould, or tool as it is often called, is at the heart of the injection moulding process. Its basic function is to accept the plastic melt from the injection unit and cool it to the desired shape prior to ejection. It is not, however, simply a matter of the mould having an impression of the shape to be moulded. Many other factors have to be taken into account - for example, the ability to fill the mould impression properly and efficiently without inducing weaknesses in the moulding and the efficient cooling of the moulding in order to maximise production rates without diminishing the quality of the moulding. In addition, the type of mould, gate and runner system, and ejection system which will best meet the needs of a particular job specification have to be determined. In our experience lack of attention to such factors leads to the mould limiting the ability of the injection moulding machine and preventing the process as a whole from achieving its true potential.




Thermoplastics


Book Description

The overall aim of this book is to aid the process of sourcing and selecting appropriate thermoplastic polymers. There are now a wide diversity of thermoplastics offered for commercial uses. At one end of the range are the high-volume commodity materials for short life consumer applications. Whereas at the other end are the high value engineering materials; with significant levels of mechanical, physical and electrical performance. Within this publication, the generic groups of thermoplastics can be identified, along with their respective attributes and limitations. All thermoplastics are available in different grades. The constituents selected to form a grade are chosen to modify aspects of material behaviour, both during processing and in the final moulded form. The directory addresses materials which can be obtained in granular, powder or paste form for subsequent processing. Information is not provided directly on semi-finished product forms, such as films, fibres, sheet or profiles, other than when inferred from the processing descriptions of specified grades. The directory covers virgin or compounded material. It does not specifically address reclaimed or recycled grades. Data is provided for the mechanical and physical properties of moulded grades as processed by the route intended by the primary manufacturer (M) or compounder (C). Material grades can be obtained from a number of sources; either the original polymer manufacturer or a recognised compounder who produces a range of grades.




Injection Molding Handbook


Book Description

This third edition has been written to thoroughly update the coverage of injection molding in the World of Plastics. There have been changes, including extensive additions, to over 50% of the content of the second edition. Many examples are provided of processing different plastics and relating the results to critiCal factors, which range from product design to meeting performance requirements to reducing costs to zero-defect targets. Changes have not been made that concern what is basic to injection molding. However, more basic information has been added concerning present and future developments, resulting in the book being more useful for a long time to come. Detailed explanations and interpretation of individual subjects (more than 1500) are provided, using a total of 914 figures and 209 tables. Throughout the book there is extensive information on problems and solutions as well as extensive cross referencing on its many different subjects. This book represents the ENCYCLOPEDIA on IM, as is evident from its extensive and detailed text that follows from its lengthy Table of CONTENTS and INDEX with over 5200 entries. The worldwide industry encompasses many hundreds of useful plastic-related computer programs. This book lists these programs (ranging from operational training to product design to molding to marketing) and explains them briefly, but no program or series of programs can provide the details obtained and the extent of information contained in this single sourcebook.




Injection Mould Design


Book Description




Handbook of Thermoplastics Injection Mould Design


Book Description

Injection moulding is one of the most important methods of manufacturing plastics products. Through the development of sophisticated micro processor control systems, the modern injection moulding machine is capable of producing precision mouldings with close tolerances in large numbers and with excellent reproducibility. This capability, however, is often limited by the lack of a proper appreciation of mould design. The mould, or tool as it is often called, is at the heart of the injection moulding process. Its basic function is to accept the plastic melt from the injection unit and cool it to the desired shape prior to ejection. It is not, however, simply a matter of the mould having an impression of the shape to be moulded. Many other factors have to be taken into account - for example, the ability to fill the mould impression properly and efficiently without inducing weaknesses in the moulding and the efficient cooling of the moulding in order to maximise production rates without diminishing the quality of the moulding. In addition, the type of mould, gate and runner system, and ejection system which will best meet the needs of a particular job specification have to be determined. In our experience lack of attention to such factors leads to the mould limiting the ability of the injection moulding machine and preventing the process as a whole from achieving its true potential.




Handbook of Thermoplastics Injection Mould Design


Book Description

Injection moulding is one of the most important methods of manufacturing plastics products. Through the development of sophisticated micro processor control systems, the modern injection moulding machine is capable of producing precision mouldings with close tolerances in large numbers and with excellent reproducibility. This capability, however, is often limited by the lack of a proper appreciation of mould design. The mould, or tool as it is often called, is at the heart of the injection moulding process. Its basic function is to accept the plastic melt from the injection unit and cool it to the desired shape prior to ejection. It is not, however, simply a matter of the mould having an impression of the shape to be moulded. Many other factors have to be taken into account - for example, the ability to fill the mould impression properly and efficiently without inducing weaknesses in the moulding and the efficient cooling of the moulding in order to maximise production rates without diminishing the quality of the moulding. In addition, the type of mould, gate and runner system, and ejection system which will best meet the needs of a particular job specification have to be determined. In our experience lack of attention to such factors leads to the mould limiting the ability of the injection moulding machine and preventing the process as a whole from achieving its true potential.




The Complete Part Design Handbook


Book Description

This handbook was written for the injection molding product designer who has a limited knowledge of engineering polymers. It is a guide for the designer to decide which resin and design geometries to use for the design of plastic parts. It can also offer knowledgeable advice for resin and machine selection and processing parameters. Manufacturer and end user satisfaction is the ultimate goal. This book is an indispensable, all inclusive, reference guide. New illustrations, graphs and equations have been included to provide additional clarity for complex ideas. Contents: - Plastic Materials Selection Guide - Engineering Product Design - Structural Design for Thermoplastics - Thermoplastic Gearing Design - Plastic Journal Bearing Design - Thermoplastic Spring Design - Thermoplastic Pressure Vessel Design - Thermoplastic Assembly Methods - Thermoplastic Effects on Design - Thermoplastic Injection Mold Design - Performance Testing of Thermoplastics - Thermoplastic Product Cost Analysis




Specialized Injection Molding Techniques


Book Description

Special Injection Molding Techniques covers several techniques used to create multicomponent products, hollow areas, and hard-soft combinations that cannot be produced with standard injection molding processes. It also includes information on the processing techniques of special materials, including foaming agents, bio-based materials, and thermosets. The book describes the most industrially relevant special injection molding techniques, with a detailed focus on understanding the basics of each technique and its main mechanisms, i.e., temperature, mold filling, bonding, residual stresses, and material behavior, also providing an explanation of process routes and their variants, and discussions of the most influencing process parameters. As special molding technologies have the potential to transform plastics processing to a highly-efficient, integrated type of manufacturing, this book provides a timely survey of these technologies, putting them into context, accentuating new opportunities, and giving relevant information on processing. Provides information about the basics needed for understanding several special injection molding techniques, including flow phenomena, bonding mechanisms, and thermal behavior Covers the basics of each technique and its main mechanisms, i.e., temperature, mold filling, bonding, residual stresses, and material behavior Discusses the most relevant processing parameters for each injection molding technique Presents a variety of techniques, including gas and water assisted injection molding, multi component injection molding, hybrid injection molding, injection molding of bio-based materials, and techniques for thermoset




Injection Molding Handbook


Book Description

The Injection Molding Handbook provides engineers, professionals and other involved in this important industry sector with a thorough up-to-date overview of injection molding processing equipment and techniques, including the basic fundamental information on chemistry, physics, material science and process engineering. It covers all components of the injection molding machine and the various process steps. Topics directly affecting injection molding, such as material selection, process control, simulation, design and troubleshooting complete this reference book for the injection molder. The updated second edition handbook presents a well-rounded overview of the underlying theory governing the various injection molding processes without loosing its practical flavor.