Handbook of VLSI Microlithography


Book Description

This handbook gives readers a close look at the entire technology of printing very high resolution and high density integrated circuit (IC) patterns into thin resist process transfer coatings-- including optical lithography, electron beam, ion beam, and x-ray lithography. The book's main theme is the special printing process needed to achieve volume high density IC chip production, especially in the Dynamic Random Access Memory (DRAM) industry. The book leads off with a comparison of various lithography methods, covering the three major patterning parameters of line/space, resolution, line edge and pattern feature dimension control. The book's explanation of resist and resist process equipment technology may well be the first practical description of the relationship between the resist process and equipment parameters. The basics of resist technology are completely covered -- including an entire chapter on resist process defectivity and the potential yield limiting effect on device production. Each alternative lithographic technique and testing method is considered and evaluated: basic metrology including optical, scanning-electron-microscope (SEM) techniques and electrical test devices, along with explanations of actual printing tools and their design, construction and performance. The editor devotes an entire chapter to today's sophisticated, complex electron-beam printers, and to the emerging x-ray printing technology now used in high-density CMOS devices. Energetic ion particle printing is a controllable, steerable technology that does not rely on resist, and occupies a final section of the handbook.




Handbook of VLSI Microlithography, 2nd Edition


Book Description

This handbook gives readers a close look at the entire technology of printing very high resolution and high density integrated circuit (IC) patterns into thin resist process transfer coatingsùincluding optical lithography, electron beam, ion beam, and x-ray lithography. The book's main theme is the special printing process needed to achieve volume high density IC chip production, especially in the Dynamic Random Access Memory (DRAM) industry. The book leads off with a comparison of various lithography methods, covering the three major patterning parameters of line/space, resolution, line edge and pattern feature dimension control. The book's explanation of resist and resist process equipment technology may well be the first practical description of the relationship between the resist process and equipment parameters. The basics of resist technology are completely coveredùincluding an entire chapter on resist process defectivity and the potential yield limiting effect on device production. Each alternative lithographic technique and testing method is considered and evaluated: basic metrology including optical, scanning-electron-microscope (SEM) techniques and electrical test devices, along with explanations of actual printing tools and their design, construction and performance. The editor devotes an entire chapter to today's sophisticated, complex electron-beam printers, and to the emerging x-ray printing technology now used in high-density CMOS devices. Energetic ion particle printing is a controllable, steerable technology that does not rely on resist, and occupies a final section of the handbook.




Handbook of Microlithography, Micromachining, and Microfabrication: Microlithography


Book Description

Focusing on the use of microlithography techniques in microelectronics manufacturing, this volume is one of a series addressing a rapidly growing field affecting the integrated circuit industry. New applications in such areas as sensors, actuators and biomedical devices, are described.







Scientific Photography and Applied Imaging


Book Description

WINNER OF THE 2001 KRASZNA-KRAUSZ PHOTOGRAPHY BOOK AWARD (Technical Photography category) The only definitive book to fully encompass the use of photography and imaging as tools in science, technology and medicine. It describes in one single volume the basic theory, techniques, materials, special equipment and applications for a wide variety of uses of photography, including: close up photography and photomacrography to spectral recording, surveillance systems, radiography and micro-imaging. This extensively illustrated photography 'bible' contains all the information you need, whether you are a scientist wishing to use photography for a specialist application, a professional needing to extend technical expertise, or a student wanting to broaden your knowledge of the applications of photography. The contents are arranged in three sections: · General Section, detailing the elements of the image capture process · Major Applications, describing the major applications of imaging · Specialist Applications, presenting an eclectic selection of more specialised but increasingly important applications Each subject is introduced with an outline of its development and contemporary importance, followed by explanations of essential theory and an overview of techniques and equipment. Mathematics is only used where necessary. Numerous applications and case studies are described. Comprehensive bibliographies and references are provided for further study.




Program Management for System on Chip Platforms


Book Description

A Fully Integrated Presentation of New Hardware and Software Product Introductions Using Program Management Methodologies for System on Chip Platforms If you're an executive, manager, or engineer in the semiconductor, software, or systems industries, this book provides conceptual views ranging from the design of integrated circuits or systems on a chip, through fabrication, to integration of chips onto boards, and through development of enablement and runtime software for system and platform deliveries. Special features included this book are: - Program management methodologies - General management fundamentals - An overview of leadership principles - Basic discrete device technology - Internal structure and operation of some common logic gates - Basic integrated circuit design concepts, building blocks, and flow - Chip packaging technologies - Details of the fabrication process for integrated circuits - Printed circuit board design, manufacture, and test - Software design, development, and test - Integrated circuit test, silicon validation, and device qualification - Program management applications bringing it all together The book explores interactions and dependencies of technologies that impact systems and platforms. This is a valuable resource to learn these technologies or to use as a reference.




Resolution Enhancement Techniques in Optical Lithography


Book Description

Ever-smaller IC devices are pushing the optical lithography envelope, increasing the importance of resolution enhancement techniques. This tutorial encompasses two decades of research. It discusses theoretical and practical aspects of commonly used techniques, including optical imaging and resolution, modified illumination, optical proximity correction, alternating and attenuating phase-shifting masks, selecting RETs, and second-generation RETs. Useful for students and practicing lithographers




Direct-Write Technologies for Rapid Prototyping Applications


Book Description

Direct-Write Technologies covers applications, materials, and the techniques in using direct-write technologies. This book provides an overview of the different direct write techniques currently available, as well as a comparison between the strengths and special attributes for each of the techniques. The techniques described open the door for building prototypes and testing materials. The book also provides an overview of the state-of-the-art technology involved in this field. Basic academic researchers and industrial development engineers who pattern thin film materials will want to have this text on their shelves as a resource for specific applications. Others in this or related fields will want the book to read the introductory material summarizing isuses common to all approaches, in order to compare and contrast different techniques. Everyday applications include electronic components and sensors, especially chemical and biosensors. There is a wide range of research and development problems requiring state-of-the-art direct write tools. This book will appeal to basic researchers and development engineers in university engineering departments and at industrial and national research laboratories. This text should appeal equally well in the United States, Asia, and Europe. Both basic academic researchers and industrial development engineers who pattern thin film materials will want to have this text on their shelves as a resource for specific applications. - An overview of the different direct write techniques currently available - A comparison between the strengths and special attributes for each of the techniques - An overview of the state-of-the-art technology involved in this field




Handbook of Hydrothermal Technology


Book Description

Quartz, zeolites, gemstones, perovskite type oxides, ferrite, carbon allotropes, complex coordinated compounds and many moreùall products now being produced using hydrothermal technology. Handbook of Hydrothermal Technology brings together the latest techniques in this rapidly advancing field in one exceptionally useful, long-needed volume. The handbook provides a single source for understanding how aqueous solvents or mineralizers work under temperature and pressure to dissolve and recrystallize normally insoluble materials, and decompose or recycle any waste material. The result, as the authors show in the book, is technologically the most efficient method in crystal growth, materials processing, and waste treatment. The book gives scientists and technologists an overview of the entire subject including: ò Evolution of the technology from geology to widespread industrial use. ò Descriptions of equipment used in the process and how it works. ò Problems involved with the growth of crystals, processing of technological materials, environmental and safety issues. ò Analysis of the direction of today's technology. In addition, readers get a close look at the hydrothermal synthesis of zeolites, fluorides, sulfides, tungstates, and molybdates, as well as native elements and simple oxides. Delving into the commercial production of various types, the authors clarify the effects of temperature, pressure, solvents, and various other chemical components on the hydrothermal processes.




Nanolithography


Book Description

Integrated circuits, and devices fabricated using the techniques developed for integrated circuits, have steadily gotten smaller, more complex, and more powerful. The rate of shrinking is astonishing – some components are now just a few dozen atoms wide. This book attempts to answer the questions, "What comes next? and "How do we get there?Nanolithography outlines the present state of the art in lithographic techniques, including optical projection in both deep and extreme ultraviolet, electron and ion beams, and imprinting. Special attention is paid to related issues, such as the resists used in lithography, the masks (or lack thereof), the metrology needed for nano-features, modeling, and the limitations caused by feature edge roughness. In addition emerging technologies are described, including the directed assembly of wafer features, nanostructures and devices, nano-photonics, and nano-fluidics.This book is intended as a guide to the researcher new to this field, reading related journals or facing the complexities of a technical conference. Its goal is to give enough background information to enable such a researcher to understand, and appreciate, new developments in nanolithography, and to go on to make advances of his/her own. - Outlines the current state of the art in alternative nanolithography technologies in order to cope with the future reduction in size of semiconductor chips to nanoscale dimensions - Covers lithographic techniques, including optical projection, extreme ultraviolet (EUV), nanoimprint, electron beam and ion beam lithography - Describes the emerging applications of nanolithography in nanoelectronics, nanophotonics and microfluidics