Remote Compositional Analysis


Book Description

Comprehensive overview of the spectroscopic, mineralogical, and geochemical techniques used in planetary remote sensing.




Medical Imaging Systems


Book Description

This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.










X-ray Photon Processing Detectors


Book Description

This book provides readers a good overview of some of most recent advances in the field of hybrid pixelated detectors for X-ray imaging. Coverage includes both technology and applications, with an in-depth review of the research topics conducted at leading research institutions in the world. The conversion of the X-ray signal into an analogue/digital value is discussed, as well as a review of CMOS chips used for X-ray image sensors. Applications of hybrid pixel detectors are discussed, such as medical imaging, high energy physics, space, non-destructive testing and security. Provides coverage of a broad range of topics, from international experts in academia and industry; Includes in-depth analysis of how to optimize X-ray detection and electronics for X-ray detection; Covers both technology and applications in a number of different domains.







Emission Tomography


Book Description

PET and SPECT are two of today's most important medical-imaging methods, providing images that reveal subtle information about physiological processes in humans and animals. Emission Tomography: The Fundamentals of PET and SPECT explains the physics and engineering principles of these important functional-imaging methods. The technology of emission tomography is covered in detail, including historical origins, scientific and mathematical foundations, imaging systems and their components, image reconstruction and analysis, simulation techniques, and clinical and laboratory applications. The book describes the state of the art of emission tomography, including all facets of conventional SPECT and PET, as well as contemporary topics such as iterative image reconstruction, small-animal imaging, and PET/CT systems. This book is intended as a textbook and reference resource for graduate students, researchers, medical physicists, biomedical engineers, and professional engineers and physicists in the medical-imaging industry. Thorough tutorials of fundamental and advanced topics are presented by dozens of the leading researchers in PET and SPECT. SPECT has long been a mainstay of clinical imaging, and PET is now one of the world's fastest growing medical imaging techniques, owing to its dramatic contributions to cancer imaging and other applications. Emission Tomography: The Fundamentals of PET and SPECT is an essential resource for understanding the technology of SPECT and PET, the most widely used forms of molecular imaging.*Contains thorough tutorial treatments, coupled with coverage of advanced topics*Three of the four holders of the prestigious Institute of Electrical and Electronics Engineers Medical Imaging Scientist Award are chapter contributors*Include color artwork




Advanced Materials for Radiation Detection


Book Description

This book offers readers an overview of some of the most recent advances in the field of advanced materials used for gamma and X-ray imaging. Coverage includes both technology and applications, with an in-depth review of the research topics from leading specialists in the field. Emphasis is on high-Z materials like CdTe, CZT and GaAs, as well as perovskite crystals, since they offer the best implementation possibilities for direct conversion X-ray detectors. Authors discuss material challenges, detector operation physics and technology and readout integrated circuits required to detect signals processes by high-Z sensors.