Harmonic Analysis and Discrete Potential Theory


Book Description

This book collects the Proceedings of a Congress held in Frascati (Rome) in the period July 1 -July 10, 1991, on the subject of harmonic analysis and discrete potential theory, and related topics. The Congress was made possible by the financial support of the Italian National Research Council ("Gruppo GNAFA"), the Ministry of University ("Gruppo Analisi Funzionale" of the University of Milano), the University of Rome "Tor Vergata", and was also patronized by the Centro "Vito Volterra" of the University of Rome "Tor Vergata". Financial support for publishing these Proceedings was provided by the University of Rome "Tor Vergata", and by a generous contribution of the Centro "Vito Volterra". I am happy of this opportunity to acknowledge the generous support of all these Institutions, and to express my gratitude, and that of all the participants. A number of distinguished mathematicians took part in the Congress. Here is the list of participants: M. Babillot, F. Choucroun, Th. Coulhon, L. Elie, F. Ledrappier, N. Th. Varopoulos (Paris); L. Gallardo (Brest); Ph. Bougerol, B. Roynette (Nancy); O. Gebuhrer (Strasbourg); G. Ahumada-Bustamante (Mulhouse); A. Valette (Neuchatel); P. Gerl (Salzburg); W. Hansen, H. Leptin (Bielefeld); M. Bozejko, A. Hulanicki, T. Pytlik (Wroclaw); C. Thomassen (Lyngby); P. Sjogren (Goteborg); V. Kaimanovich (Leningrad); A. Nevo (Jerusalem); T. Steger (Chicago); S. Sawyer, M. Taibleson, G. Weiss (St. Louis); J. Cohen, S.S ali ani (Maryland); D. Voiculescu (Berkeley); A. Zemanian (Stony Brook); S. Northshield (Plattsburgh); J. Taylor (Montreal); J




Trends in Harmonic Analysis


Book Description

This book illustrates the wide range of research subjects developed by the Italian research group in harmonic analysis, originally started by Alessandro Figà-Talamanca, to whom it is dedicated in the occasion of his retirement. In particular, it outlines some of the impressive ramifications of the mathematical developments that began when Figà-Talamanca brought the study of harmonic analysis to Italy; the research group that he nurtured has now expanded to cover many areas. Therefore the book is addressed not only to experts in harmonic analysis, summability of Fourier series and singular integrals, but also in potential theory, symmetric spaces, analysis and partial differential equations on Riemannian manifolds, analysis on graphs, trees, buildings and discrete groups, Lie groups and Lie algebras, and even in far-reaching applications as for instance cellular automata and signal processing (low-discrepancy sampling, Gaussian noise).




Random Walks and Discrete Potential Theory


Book Description

Comprehensive and interdisciplinary text covering the interplay between random walks and structure theory.




Harmonic Analysis, Partial Differential Equations and Applications


Book Description

This collection of articles and surveys is devoted to Harmonic Analysis, related Partial Differential Equations and Applications and in particular to the fields of research to which Richard L. Wheeden made profound contributions. The papers deal with Weighted Norm inequalities for classical operators like Singular integrals, fractional integrals and maximal functions that arise in Harmonic Analysis. Other papers deal with applications of Harmonic Analysis to Degenerate Elliptic equations, variational problems, Several Complex variables, Potential theory, free boundaries and boundary behavior of functions.




Multiscale Potential Theory


Book Description

This self-contained text/reference provides a basic foundation for practitioners, researchers, and students interested in any of the diverse areas of multiscale (geo)potential theory. New mathematical methods are developed enabling the gravitational potential of a planetary body to be modeled using a continuous flow of observations from land or satellite devices. Harmonic wavelets methods are introduced, as well as fast computational schemes and various numerical test examples. Presented are multiscale approaches for numerous geoscientific problems, including geoidal determination, magnetic field reconstruction, deformation analysis, and density variation modelling With exercises at the end of each chapter, the book may be used as a textbook for graduate-level courses in geomathematics, applied mathematics, and geophysics. The work is also an up-to-date reference text for geoscientists, applied mathematicians, and engineers.




Potential Theory on Infinite Networks


Book Description

The aim of the book is to give a unified approach to new developments in discrete potential theory and infinite network theory. The author confines himself to the finite energy case, but this does not result in loss of complexity. On the contrary, the functional analytic machinery may be used in analogy with potential theory on Riemann manifolds. The book is intended for researchers with interdisciplinary interests in one of the following fields: Markov chains, combinatorial graph theory, network theory, Dirichlet spaces, potential theory, abstract harmonic analysis, theory of boundaries.







Trends in Harmonic Analysis


Book Description

This book illustrates the wide range of research subjects developed by the Italian research group in harmonic analysis, originally started by Alessandro Figà-Talamanca, to whom it is dedicated in the occasion of his retirement. In particular, it outlines some of the impressive ramifications of the mathematical developments that began when Figà-Talamanca brought the study of harmonic analysis to Italy; the research group that he nurtured has now expanded to cover many areas. Therefore the book is addressed not only to experts in harmonic analysis, summability of Fourier series and singular integrals, but also in potential theory, symmetric spaces, analysis and partial differential equations on Riemannian manifolds, analysis on graphs, trees, buildings and discrete groups, Lie groups and Lie algebras, and even in far-reaching applications as for instance cellular automata and signal processing (low-discrepancy sampling, Gaussian noise).




Potential Theory in Gravity and Magnetic Applications


Book Description

This text bridges the gap between the classic texts on potential theory and modern books on applied geophysics. It opens with an introduction to potential theory, emphasising those aspects particularly important to earth scientists, such as Laplace's equation, Newtonian potential, magnetic and electrostatic fields, and conduction of heat. The theory is then applied to the interpretation of gravity and magnetic anomalies, drawing on examples from modern geophysical literature. Topics explored include regional and global fields, forward modeling, inverse methods, depth-to-source estimation, ideal bodies, analytical continuation, and spectral analysis. The book includes numerous exercises and a variety of computer subroutines written in FORTRAN. Graduate students and researchers in geophysics will find this book essential.