Harmonic Mappings, Twistors And Sigma Models


Book Description

Harmonic mappings have played in recent years and will likely to play in the future an important role in Differential Geometry and Theoretical Physics, where they are known as s-models. These Proceedings develop both aspects of the theory, with a special attention to the constructive methods, in particular the so-called twistorial approach. It includes expository articles on the twistorial methods, the various appearence of σ-models in Physics, the powerful analytic theory of regularity of SCHOEN-UHLENBECK.




Twistors in Mathematics and Physics


Book Description

This 1990 collection of review articles covers the considerable progress made in a wide range of applications of twistor theory.




Harmonic Maps and Differential Geometry


Book Description

This volume contains the proceedings of a conference held in Cagliari, Italy, from September 7-10, 2009, to celebrate John C. Wood's 60th birthday. These papers reflect the many facets of the theory of harmonic maps and its links and connections with other topics in Differential and Riemannian Geometry. Two long reports, one on constant mean curvature surfaces by F. Pedit and the other on the construction of harmonic maps by J. C. Wood, open the proceedings. These are followed by a mix of surveys on Prof. Wood's area of expertise: Lagrangian surfaces, biharmonic maps, locally conformally Kahler manifolds and the DDVV conjecture, as well as several research papers on harmonic maps. Other research papers in the volume are devoted to Willmore surfaces, Goldstein-Pedrich flows, contact pairs, prescribed Ricci curvature, conformal fibrations, the Fadeev-Hopf model, the Compact Support Principle and the curvature of surfaces.




Form Factors in Completely Integrable Models of Quantum Field Theory


Book Description

The monograph summarizes recent achievements in the calculation of matrix elements of local operators (form factors) for completely integrable models. Particularly, it deals with sine-Gordon, chiral Gross-Neven and O(3) nonlinear s models. General requirements on form factors are formulated and explicit formulas for form factors of most fundamental local operators are presented for the above mentioned models.




Geometry Of Biharmonic Mappings: Differential Geometry Of Variational Methods


Book Description

'The present volume, written in a clear and precise style, ends with a rich bibliography of 167 items, including some classical books and papers. In the reviewer’s opinion, this excellent monograph will be a basic reference for graduate students and researchers working in the field of differential geometry of variational methods.'zbMATHThe author describes harmonic maps which are critical points of the energy functional, and biharmonic maps which are critical points of the bienergy functional. Also given are fundamental materials of the variational methods in differential geometry, and also fundamental materials of differential geometry.




Spectral Geometry, Riemannian Submersions, and the Gromov-Lawson Conjecture


Book Description

This cutting-edge, standard-setting text explores the spectral geometry of Riemannian submersions. Working for the most part with the form valued Laplacian in the class of smooth compact manifolds without boundary, the authors study the relationship-if any-between the spectrum of Dp on Y and Dp on Z, given that Dp is the p form valued Laplacian and pi: Z ® Y is a Riemannian submersion. After providing the necessary background, including basic differential geometry and a discussion of Laplace type operators, the authors address rigidity theorems. They establish conditions that ensure that the pull back of every eigenform on Y is an eigenform on Z so the eigenvalues do not change, then show that if a single eigensection is preserved, the eigenvalues do not change for the scalar or Bochner Laplacians. For the form valued Laplacian, they show that if an eigenform is preserved, then the corresponding eigenvalue can only increase. They generalize these results to the complex setting as well. However, the spinor setting is quite different. For a manifold with non-trivial boundary and imposed Neumann boundary conditions, the result is surprising-the eigenvalues can change. Although this is a relatively rare phenomenon, the authors give examples-a circle bundle or, more generally, a principal bundle with structure group G where the first cohomology group H1(G;R) is non trivial. They show similar results in the complex setting, show that eigenvalues can decrease in the spinor setting, and offer a list of unsolved problems in this area. Moving to some related topics involving questions of positive curvature, for the first time in mathematical literature the authors establish a link between the spectral geometry of Riemannian submersions and the Gromov-Lawson conjecture. Spectral Geometry, Riemannian Submersions, and the Gromov-Lawson Conjecture addresses a hot research area and promises to set a standard for the field. Researchers and applied mathematicians interested in mathematical physics and relativity will find this work both fascinating and important.




Geometry And Topology Of Submanifolds Iv - Proceedings Of The Conference On Differential Geometry And Vision


Book Description

This proceedings on pure and applied differential geometry, discusses several subjects in submanifold theory, such as the Willmore problem, minimal surfaces, submanifolds of finite type, affine differential geometry, indefinite Riemannian geometry, and applications of differential geometry in human and artificial vision.




Trends in Soliton Research


Book Description

Since their discovery a mere thirty years ago, solitons have been invoked to explain such diverse phenomena as: The long lived 'giant red spot' in the highly turbulent Jovian atmosphere. The famous Fermi-Pasta-Ulam paradox wherein a nonlinearly coupled lattice of particles does not display the expected equipartition of energy among available modes. Covering ion-acoustic waves in a plasma, energy storage and transfer in proteins via the Davydov soliton, and, the propagation of short laser pulses in optical fibres over long distances with negligible shape change, this volume presents important research from around the globe.




Riemannian Submersions and Related Topics


Book Description

This book provides the first-ever systematic introduction to thetheory of Riemannian submersions, which was initiated by BarrettO''Neill and Alfred Gray less than four decades ago. The authorsfocus their attention on classification theorems when the total spaceand the fibres have nice geometric properties.




Geometry of Foliations


Book Description

The topics in this survey volume concern research done on the differential geom etry of foliations over the last few years. After a discussion of the basic concepts in the theory of foliations in the first four chapters, the subject is narrowed down to Riemannian foliations on closed manifolds beginning with Chapter 5. Following the discussion of the special case of flows in Chapter 6, Chapters 7 and 8 are de voted to Hodge theory for the transversal Laplacian and applications of the heat equation method to Riemannian foliations. Chapter 9 on Lie foliations is a prepa ration for the statement of Molino's Structure Theorem for Riemannian foliations in Chapter 10. Some aspects of the spectral theory for Riemannian foliations are discussed in Chapter 11. Connes' point of view of foliations as examples of non commutative spaces is briefly described in Chapter 12. Chapter 13 applies ideas of Riemannian foliation theory to an infinite-dimensional context. Aside from the list of references on Riemannian foliations (items on this list are referred to in the text by [ ]), we have included several appendices as follows. Appendix A is a list of books and surveys on particular aspects of foliations. Appendix B is a list of proceedings of conferences and symposia devoted partially or entirely to foliations. Appendix C is a bibliography on foliations, which attempts to be a reasonably complete list of papers and preprints on the subject of foliations up to 1995, and contains approximately 2500 titles.