Harmonic Maps: Selected Papers By James Eells And Collaborators


Book Description

These original research papers, written during a period of over a quarter of a century, have two main objectives. The first is to lay the foundations of the theory of harmonic maps between Riemannian Manifolds, and the second to establish various existence and regularity theorems as well as the explicit constructions of such maps.




Harmonic Maps


Book Description

These original research papers, written during a period of over a quarter of a century, have two main objectives. The first is to lay the foundations of the theory of harmonic maps between Riemannian Manifolds, and the second to establish various existence and regularity theorems as well as the explicit constructions of such maps.




Harmonic Maps and Differential Geometry


Book Description

This volume contains the proceedings of a conference held in Cagliari, Italy, from September 7-10, 2009, to celebrate John C. Wood's 60th birthday. These papers reflect the many facets of the theory of harmonic maps and its links and connections with other topics in Differential and Riemannian Geometry. Two long reports, one on constant mean curvature surfaces by F. Pedit and the other on the construction of harmonic maps by J. C. Wood, open the proceedings. These are followed by a mix of surveys on Prof. Wood's area of expertise: Lagrangian surfaces, biharmonic maps, locally conformally Kahler manifolds and the DDVV conjecture, as well as several research papers on harmonic maps. Other research papers in the volume are devoted to Willmore surfaces, Goldstein-Pedrich flows, contact pairs, prescribed Ricci curvature, conformal fibrations, the Fadeev-Hopf model, the Compact Support Principle and the curvature of surfaces.




Harmonic Morphisms Between Riemannian Manifolds


Book Description

This is an account in book form of the theory of harmonic morphisms between Riemannian manifolds.




Noncommutative Geometry and Number Theory


Book Description

In recent years, number theory and arithmetic geometry have been enriched by new techniques from noncommutative geometry, operator algebras, dynamical systems, and K-Theory. This volume collects and presents up-to-date research topics in arithmetic and noncommutative geometry and ideas from physics that point to possible new connections between the fields of number theory, algebraic geometry and noncommutative geometry. The articles collected in this volume present new noncommutative geometry perspectives on classical topics of number theory and arithmetic such as modular forms, class field theory, the theory of reductive p-adic groups, Shimura varieties, the local L-factors of arithmetic varieties. They also show how arithmetic appears naturally in noncommutative geometry and in physics, in the residues of Feynman graphs, in the properties of noncommutative tori, and in the quantum Hall effect.




Mathematical Reviews


Book Description










Bibliographic Guide to East Asian Studies 1994


Book Description

An aid for researching non-western cultures, this bibliography covers Japan, China, North and South Korea, Hong Kong, and Taiwan, with approximately 3500 listings from LC MARC tapes and the Oriental Division of the New York Public Library. It includes publications about East Asia; materials published in any of the relevant countries; and publications in the Chinese, Japanese and Korean languages. Listings are transcribed into Anglicized characters. Each entry provides complete bibliographic information, along with the NYPL and/or LC call numbers.