Power System Harmonic Analysis


Book Description

Die Sicherung einer Stromversorgung in hoher Qualität ist heute von überragender Bedeutung. Die Anwesenheit von Verzerrungen führt zu verschiedensten Problemen. Dieses Buch präsentiert neue Methoden zur Zeit- und Frequenzdomänenmodellierung, Fourieranalyse und Identifikation von Erd- und Leiterimpedanzen von Stromversorgungssystemen.




Power Systems Harmonics


Book Description

Aiming at a better understanding of power system harmonics, this text presents a discussion of this issue, providing a quantitative analysis when possible. Pertinent equations are developed. 80 practical case studies based on real-life work experience come with the text. These are analysed providing the results and commenting on the output. Furthermore, 80 end-of-chapter problems are provided. A detailed solution manual is available. The book can be used as a textbook for undergraduate and graduate students, in short-courses offered by consultants and institutes, as well as a tutorial, reference, or self-study course for practising engineers in the industry and electric utility.




Electric Distribution Systems


Book Description

A comprehensive review of the theory and practice for designing, operating, and optimizing electric distribution systems, revised and updated Now in its second edition, Electric Distribution Systems has been revised and updated and continues to provide a two-tiered approach for designing, installing, and managing effective and efficient electric distribution systems. With an emphasis on both the practical and theoretical approaches, the text is a guide to the underlying theory and concepts and provides a resource for applying that knowledge to problem solving. The authors—noted experts in the field—explain the analytical tools and techniques essential for designing and operating electric distribution systems. In addition, the authors reinforce the theories and practical information presented with real-world examples as well as hundreds of clear illustrations and photos. This essential resource contains the information needed to design electric distribution systems that meet the requirements of specific loads, cities, and zones. The authors also show how to recognize and quickly respond to problems that may occur during system operations, as well as revealing how to improve the performance of electric distribution systems with effective system automation and monitoring. This updated edition: • Contains new information about recent developments in the field particularly in regard to renewable energy generation • Clarifies the perspective of various aspects relating to protection schemes and accompanying equipment • Includes illustrative descriptions of a variety of distributed energy sources and their integration with distribution systems • Explains the intermittent nature of renewable energy sources, various types of energy storage systems and the role they play to improve power quality, stability, and reliability Written for engineers in electric utilities, regulators, and consultants working with electric distribution systems planning and projects, the second edition of Electric Distribution Systems offers an updated text to both the theoretical underpinnings and practical applications of electrical distribution systems.







Power System Harmonics and Passive Filter Designs


Book Description

As new technologies are created and advances are made with the ongoing research efforts, power system harmonics has become a subject of great interest. The author presents these nuances with real-life case studies, comprehensive models of power system components for harmonics, and EMTP simulations. Comprehensive coverage of power system harmonics Presents new harmonic mitigation technologies In-depth analysis of the effects of harmonics Foreword written by Dr. Jean Mahseredijan, world renowned authority on simulations of electromagnetic transients and harmonics




Power System Harmonics


Book Description

Harmonic distortion problems include equipment overheating, motor failures, capacitor failure and inaccurate power metering. The topic of power system harmonics was covered for the first time 20 years ago and the first edition has become a standard reference work in this area. Unprecedented developments in power electronic devices and their integration at all levels in the power system require a new look at the causes and effects of these problems, and the state of hardware and software available for harmonic assessment. Following the successful first edition, this second edition of Power System Harmonics maintains the practical approach to the subject and discusses the impact of advanced power electronic technology on instrumentation, simulation, standards and active harmonic elimination techniques. Features include: A new chapter on modern digital instrumentation techniques. Added sections on active filters and modern distorting devices such as FACTS devices, multilevel conversion, current source, voltage source inverters and turn-OFF-related power electronic devices. References to international standards for harmonics and inter-harmonics. Numerical examples of technique application. Offering a comprehensive understanding of power systems, this book is an asset to power engineers involved in the planning, design and operation of power system generation, transmission and distribution. Researchers and postgraduate students in the field will also benefit from this useful reference.







Power Quality in Power Systems and Electrical Machines


Book Description

The second edition of this must-have reference covers power quality issues in four parts, including new discussions related to renewable energy systems. The first part of the book provides background on causes, effects, standards, and measurements of power quality and harmonics. Once the basics are established the authors move on to harmonic modeling of power systems, including components and apparatus (electric machines). The final part of the book is devoted to power quality mitigation approaches and devices, and the fourth part extends the analysis to power quality solutions for renewable energy systems. Throughout the book worked examples and exercises provide practical applications, and tables, charts, and graphs offer useful data for the modeling and analysis of power quality issues. Provides theoretical and practical insight into power quality problems of electric machines and systems 134 practical application (example) problems with solutions 125 problems at the end of chapters dealing with practical applications 924 references, mostly journal articles and conference papers, as well as national and international standards and guidelines




Power System Harmonics


Book Description

Excessive utilization of power electronic devices and the increasing integration of renewable energy resources with their inverter-based interfaces into distribution systems have brought different power quality problems in these systems. There is no doubt that the transition from traditional centralized power systems to future decentralized smart grid necessities is paying much attention to power quality knowledge to realize better system reliability and performance to be ready for the big change in the coming years of accommodating thousands of decentralized generation units. This book aims to present harmonic modeling, analysis, and mitigation techniques for modern power systems. It is a tool for the practicing engineers of electrical power systems that are concerned with the power system harmonics. Likewise, it is a key resource for academics and researchers who have some background in electrical power systems.




Subsynchronous Resonance in Power Systems


Book Description

Mathematical calculations for subsynchronous system modeling Subsynchronous Resonance in Power Systems provides in-depth guidance toward the parameters, modeling, and analysis of this complex subclass of power systems. Emphasizing field testing to determine the data required, this book facilitates thorough and efficient oscillation and damping modeling using eigenvalues of a system's linear model. Expert discussion provides step-by-step instruction for generator, network, and turbine-generator shaft models, followed by detailed tutorials for model testing and analysis based on IEEE, CORPALS, and SSR eigenvalue analysis. Comprehensive in scope and practical in focus, this book is an invaluable resource for anyone working with frequencies below 60 Hz.