Energy Harvesting


Book Description

Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.




Taming the Sun


Book Description

How solar could spark a clean-energy transition through transformative innovation—creative financing, revolutionary technologies, and flexible energy systems. Solar energy, once a niche application for a limited market, has become the cheapest and fastest-growing power source on earth. What's more, its potential is nearly limitless—every hour the sun beams down more energy than the world uses in a year. But in Taming the Sun, energy expert Varun Sivaram warns that the world is not yet equipped to harness erratic sunshine to meet most of its energy needs. And if solar's current surge peters out, prospects for replacing fossil fuels and averting catastrophic climate change will dim. Innovation can brighten those prospects, Sivaram explains, drawing on firsthand experience and original research spanning science, business, and government. Financial innovation is already enticing deep-pocketed investors to fund solar projects around the world, from the sunniest deserts to the poorest villages. Technological innovation could replace today's solar panels with coatings as cheap as paint and employ artificial photosynthesis to store intermittent sunshine as convenient fuels. And systemic innovation could add flexibility to the world's power grids and other energy systems so they can dependably channel the sun's unreliable energy. Unleashing all this innovation will require visionary public policy: funding researchers developing next-generation solar technologies, refashioning energy systems and economic markets, and putting together a diverse clean energy portfolio. Although solar can't power the planet by itself, it can be the centerpiece of a global clean energy revolution. A Council on Foreign Relations Book




Soft Machines


Book Description

Enthusiasts look forward to a time when tiny machines reassemble matter and process information but is their vision realistic? 'Soft Machines' explains why the nanoworld is so different to the macro-world that we are all familar with and shows how it has more in common with biology than conventional engineering.




Rainwater Harvesting for Drylands and Beyond


Book Description

« "Rainwater Harvesting for Drylands and Beyond, Volume 1' is the first book in a three-volume guide that teaches you how to conceptualize, design, and implement sustainable water-harvesting systems for your home, landscape, and community. The lessons in this volume will enable you to assess your on-site resources, give you a diverse array of strategies to maximize their potential, and empower you with guiding principles to create an integrated, multi-functional water-harvesting plan specific to your site and needs. »--




Harvesting the Biosphere


Book Description

An interdisciplinary and quantitative account of human claims on the biosphere's stores of living matter, from prehistoric hunting to modern energy production. The biosphere—the Earth's thin layer of life—dates from nearly four billion years ago, when the first simple organisms appeared. Many species have exerted enormous influence on the biosphere's character and productivity, but none has transformed the Earth in so many ways and on such a scale as Homo sapiens. In Harvesting the Biosphere, Vaclav Smil offers an interdisciplinary and quantitative account of human claims on the biosphere's stores of living matter, from prehistory to the present day. Smil examines all harvests—from prehistoric man's hunting of megafauna to modern crop production—and all uses of harvested biomass, including energy, food, and raw materials. Without harvesting of the biomass, Smil points out, there would be no story of human evolution and advancing civilization; but at the same time, the increasing extent and intensity of present-day biomass harvests are changing the very foundations of civilization's well-being. In his detailed and comprehensive account, Smil presents the best possible quantifications of past and current global losses in order to assess the evolution and extent of biomass harvests. Drawing on the latest work in disciplines ranging from anthropology to environmental science, Smil offers a valuable long-term, planet-wide perspective on human-caused environmental change.




Solar Power to the People


Book Description

You read about it every day: How can we create a sustainable, reliable and affordable energy supply? Does a local water supply play a role in this? Why don’t we drive hydrogen cars that are powered by the sun and rain? The availability of cheap green energy is increasing. . We have solar and wind power, and even energy derived from ambient heat. At the same time we have very diverse energy needs: fuel for cars, electricity, heat for buildings, feedstock for industrial processes, to name just a few. Energy supply and demand do not match, which means that we have to match resources, storage and consumption in an intelligent way. Solar Power to the People casts a thoughtful vision on sustainable energy. We have to bring the power of the sun to the people. That is what sustainable energy and water is all about. The authors believe we have to act quickly. The matter is urgent.




Sun Tracking and Solar Renewable Energy Harvesting


Book Description

Free to download eBook on Practical Solar Tracking Design, Solar Tracking, Sun Tracking, Sun Tracker, Solar Tracker, Follow Sun, Sun Position calculation (Azimuth, Elevation, Zenith), Sun following, Sunrise, Sunset, Moon-phase, Moonrise, Moonset calculators. In harnessing power from the sun through a solar tracker or solar tracking system, renewable energy system developers require automatic solar tracking software and solar position algorithms. On-axis sun tracking system such as the altitude-azimuth dual axis or multi-axis solar tracker systems use a sun tracking algorithm or ray tracing sensors or software to ensure the sun's passage through the sky is traced with high precision in automated solar tracker applications, right through summer solstice, solar equinox and winter solstice. Eco Friendly and Environmentally Sustainable Micro Combined Solar Heat and Power (m-CHP, m-CCHP, m-CHCP) with Microgrid Storage and Layered Smartgrid Control towards Supplying Off-Grid Rural Villages in developing BRICS countries such as Africa, India, China and Brazil. Off-grid rural villages and isolated islands areas require mCHP and trigeneration solar power plants and associated isolated smart microgrid solutions to serve the community energy needs. This article describes the development progress for such a system, also referred to as solar polygeneration. The system includes a sun tracker mechanism wherin a parabolic dish or lenses are guided by a light sensitive mechanique in a way that the solar receiver is always at right angle to the solar radiation. Solar thermal energy is then either converted into electrical energy through a free piston Stirling, or stored in a thermal storage container. The project includes the thermodynamic modeling of the plant in Matlab Simulink as well as the development of an intelligent control approach that includes smart microgrid distribution and optimization. The book includes aspects in the simulation and optimization of stand-alone hybrid renewable energy systems and co-generation in isolated or islanded microgrids. It focusses on the stepwise development of a hybrid solar driven micro combined cooling heating and power (mCCHP) compact trigeneration polygeneration and thermal energy storage (TES) system with intelligent weather prediction, weak-ahead scheduling (time horizon), and look-ahead dispatch on integrated smart microgrid distribution principles. The solar harvesting and solar thermodynamic system includes an automatic sun tracking platform based on a PLC controlled mechatronic sun tracking system that follows the sun progressing across the sky. An intelligent energy management and adaptive learning control optimization approach is proposed for autonomous off-grid remote power applications, both for thermodynamic optimization and smart micro-grid optimization for distributed energy resources (DER). The correct resolution of this load-following multi objective optimization problem is a complex task because of the high number and multi-dimensional variables, the cross-correlation and interdependency between the energy streams as well as the non-linearity in the performance of some of the system components. Exergy-based control approaches for smartgrid topologies are considered in terms of the intelligence behind the safe and reliable operation of a microgrid in an automated system that can manage energy flow in electrical as well as thermal energy systems. The standalone micro-grid solution would be suitable for a rural village, intelligent building, district energy system, campus power, shopping mall centre, isolated network, eco estate or remote island application setting where self-generation and decentralized energy system concepts play a role. Discrete digital simulation models for the thermodynamic and active demand side management systems with digital smartgrid control unit to optimize the system energy management is currently under development. Parametric simulation models for this trigeneration system (polygeneration, poligeneration, quadgeneration) are developed on the Matlab Simulink and TrnSys platforms. In terms of model predictive coding strategies, the automation controller will perform multi-objective cost optimization for energy management on a microgrid level by managing the generation and storage of electrical, heat and cooling energies in layers. Each layer has its own set of smart microgrid priorities associated with user demand side cycle predictions. Mixed Integer Linear Programming and Neural network algorithms are being modeled to perform Multi Objective Control optimization as potential optimization and adaptive learning techniques.




Solar Energy


Book Description

An introduction to the fundamental science and engineering of solar energy technologies. Gives a concise and detailed review of solar energy and its interaction with materials, and discusses photovoltaic devices and solar thermal technologies like the solar chimney, solar (power) tower, flat plate water heater, and electricity generation.




Solar Power Plants


Book Description

In the introductory and concluding chapters this book strive to satisfy the needs of the interested lay reader by addressing the potential, advantages, and costs of solar power plants. For the interested student, scientist, or technically oriented lay person the physical principles of insolation, its variability, concentration, and most efficient use are developed in some detail. Finally, experimental and theoretical developments in the recently created field of solar driven chemistry (via thermal, quantum, or electrical excitation) are described. The contributions in this book are written by leading solar scientists and engineering experts whose extensive background and experience in solar energy lend authenticity and completeness to the book. Design aspects of, and results from large experimental and demonstration plants are described by individuals who were directly involved in the design and testing of many of these plants. Consideration of the viability and future economics of large-scale solar power generation provides an outlook on the energy contributions which can be expected from an optional future supply of abundant and renewable energy, having little impact on the environment. This provides the rationale for the continued commitment to the development of solar power technologies by researchers, engineers, and industry. The eventual depletion of, or future political attacks on our energy supply will have less serious impact once this renewable option is in place.




The Chinese Greenhouse


Book Description

“A prescription for survival in this gorgeously illustrated and accessible guide to the future of farming.” —Albert Bates, author of The Biochar Solution Grow vegetables year-round in a greenhouse powered only by solar energy! Originally developed in China to feed millions, Chinese greenhouses are earth-sheltered, solar-heated, east-west oriented, intelligently glazed, and well-insulated. They have proven highly effective in growing warm-weather vegetables and fruits like green peppers and tomatoes in cold climates through fall, winter, and early spring using passive solar energy as the sole heat source. The Chinese Greenhouse is a full-color comprehensive guide to these passive solar greenhouses for self-sufficiency and growing year-round in soil or aquaponic grow beds with no additional heat. Coverage includes: How to design, build, and operate a Chinese greenhouse How to improve performance via short-term and long-term heat banking How to provide additional heat to make your greenhouse operate even more effectively How to cool the greenhouse during the summer. Become a more self-sufficient gardener, growing and harvesting a variety of fresh fruits and vegetables year-round, with your own Chinese greenhouse. “Wonderfully researched . . . brilliant.” —Jean-Martin Fortier, farmer and author of The Market Gardener, editor of Growers Magazine “Essential reading for pioneers of Chinese greenhouses.” —Pam Dawling, author of The Year-Round Hoophouse and Sustainable Market Farming “Every enthusiastic vegetable farmer dreams of this winter-growing miracle, and Dan shows how to do it.” —Shawna Coronado, author of 101 Organic Gardening Hacks