Hausdorff Measures


Book Description

When it was first published this was the first general account of Hausdorff measures, a subject that has important applications in many fields of mathematics. There are three chapters: the first contains an introduction to measure theory, paying particular attention to the study of non-s-finite measures. The second develops the most general aspects of the theory of Hausdorff measures, and the third gives a general survey of applications of Hausdorff measures followed by detailed accounts of two special applications. This edition has a foreword by Kenneth Falconer outlining the developments in measure theory since this book first appeared. Based on lectures given by the author at University College London, this book is ideal for graduate mathematicians with no previous knowledge of the subject, but experts in the field will also want a copy for their shelves.







Variational Methods in Image Segmentation


Book Description

This book contains both a synthesis and mathematical analysis of a wide set of algorithms and theories whose aim is the automatic segmen tation of digital images as well as the understanding of visual perception. A common formalism for these theories and algorithms is obtained in a variational form. Thank to this formalization, mathematical questions about the soundness of algorithms can be raised and answered. Perception theory has to deal with the complex interaction between regions and "edges" (or boundaries) in an image: in the variational seg mentation energies, "edge" terms compete with "region" terms in a way which is supposed to impose regularity on both regions and boundaries. This fact was an experimental guess in perception phenomenology and computer vision until it was proposed as a mathematical conjecture by Mumford and Shah. The third part of the book presents a unified presentation of the evi dences in favour of the conjecture. It is proved that the competition of one-dimensional and two-dimensional energy terms in a variational for mulation cannot create fractal-like behaviour for the edges. The proof of regularity for the edges of a segmentation constantly involves con cepts from geometric measure theory, which proves to be central in im age processing theory. The second part of the book provides a fast and self-contained presentation of the classical theory of rectifiable sets (the "edges") and unrectifiable sets ("fractals").







Fractals in Probability and Analysis


Book Description

A mathematically rigorous introduction to fractals, emphasizing examples and fundamental ideas while minimizing technicalities.




Geometry of Sets and Measures in Euclidean Spaces


Book Description

This book studies the geometric properties of general sets and measures in euclidean space.




Fourier Analysis and Hausdorff Dimension


Book Description

Modern text examining the interplay between measure theory and Fourier analysis.




The Geometry of Fractal Sets


Book Description

A mathematical study of the geometrical aspects of sets of both integral and fractional Hausdorff dimension. Considers questions of local density, the existence of tangents of such sets as well as the dimensional properties of their projections in various directions.




Integral, Probability, and Fractal Measures


Book Description

Providing the mathematical background required for the study of fractal topics, this book deals with integration in the modern sense, together with mathematical probability. The emphasis is on the particular results that aid the discussion of fractals, and follows Edgars Measure, Topology, and Fractal Geometry. With exercises throughout, this is and ideal text for beginning graduate students both in the classroom and for self-study.




Classics On Fractals


Book Description

Read the masters! Experience has shown that this is good advice for the serious mathematics student. This book contains a selection of the classical mathematical papers related to fractal geometry. For the convenience of the student or scholar wishing to learn about fractal geometry, nineteen of these papers are collected here in one place. Twelve of the nineteen have been translated into English from German, French, or Russian. In many branches of science, the work of previous generations is of interest only for historical reasons. This is much less so in mathematics.1 Modern-day mathematicians can learn (and even find good ideas) by reading the best of the papers of bygone years. In preparing this volume, I was surprised by many of the ideas that come up.