Head-Related Transfer Function and Virtual Auditory Display


Book Description

This book systematically details the basic principles and applications of head-related transfer function (HRTF) and virtual auditory display (VAD), and reviews the latest developments in the field, especially those from the author’s own state-of-the-art research group. Head-Related Transfer Function and Virtual Auditory Display covers binaural hearing and the basic principles, experimental measurements, computation, physical characteristics analyses, filter design, and customization of HRTFs. It also details the principles and applications of VADs, including headphone and loudspeaker-based binaural reproduction, virtual reproduction of stereophonic and multi-channel surround sound, binaural room simulation, rendering systems for dynamic and real-time virtual auditory environments, psychoacoustic evaluation and validation of VADs, and a variety of applications of VADs. This guide provides all the necessary knowledge and latest results for researchers, graduate students, and engineers who work in the field of HRTF and VAD.




Head-Related Transfer Function and Acoustic Virtual Reality


Book Description

This book covers all aspects of head-related transfer function (HRTF), from the fundamentals through to the latest applications, such as 3D sound systems. An introductory chapter defines HRTF, describes the coordinate system used in the book, and presents the most recent research achievements in the field. HRTF and sound localization in the horizontal and median planes are then explained, followed by discussion of individual differences in HRTF, solutions to this individuality (personalization of HRTF), and methods of sound image control for an arbitrary 3D direction, encompassing both classic theory and state of the art data. The relations between HRTF and sound image distance and between HRTF and speech intelligibility are fully explored, and measurement and signal processing methods for HRTF are examined in depth. Here, supplementary material is provided to enable readers to measure and analyze HRTF by themselves. In addition, some typical HRTF databases are compared. The final two chapters are devoted to the principles and applications of acoustic virtual reality. This clearly written book will be ideal for all who wish to learn about HRTF and how to use it in their research.







Anthropometric Individualization of Head-Related Transfer Functions Analysis and Modeling


Book Description

Human sound localization helps to pay attention to spatially separated speakers using interaural level and time differences as well as angle-dependent monaural spectral cues. In a monophonic teleconference, for instance, it is much more difficult to distinguish between different speakers due to missing binaural cues. Spatial positioning of the speakers by means of binaural reproduction methods using head-related transfer functions (HRTFs) enhances speech comprehension. These HRTFs are influenced by the torso, head and ear geometry as they describe the propagation path of the sound from a source to the ear canal entrance. Through this geometry-dependency, the HRTF is directional and subject-dependent. To enable a sufficient reproduction, individual HRTFs should be used. However, it is tremendously difficult to measure these HRTFs. For this reason this thesis proposes approaches to adapt the HRTFs applying individual anthropometric dimensions of a user. Since localization at low frequencies is mainly influenced by the interaural time difference, two models to adapt this difference are developed and compared with existing models. Furthermore, two approaches to adapt the spectral cues at higher frequencies are studied, improved and compared. Although the localization performance with individualized HRTFs is slightly worse than with individual HRTFs, it is nevertheless still better than with non-individual HRTFs, taking into account the measurement effort.




Soundscape Semiotics


Book Description

Book Soundscape Semiotics - Localization and Categorization is a research publication that covers original research on developments within the Soundscape Semiotics field of study. The book is a collection of reviewed scholarly contributions written by different authors. Each scholarly contribution represents a chapter and each chapter is complete in itself but related to the major topics and objectives. The chapters included in the book are divided in two section. First section - Advanced Signal Processing Methodologies for Soundscape Analysis contains 5 chapters, and second section - Human Hearing Estimations and Cognitive Soundscape Analysis 3 chapters. The target audience comprises scholars and specialists in the field.




Virtual Reality


Book Description

This book constitutes the refereed proceedings of the Second International Conference on Virtual Reality, ICVR 2007, held in Beijing, China. It covers 3D rendering and visualization, interacting and navigating in virtual and augmented environments, industrial applications of virtual reality, as well as health, cultural, educational and entertainment applications.







Binaural and Spatial Hearing in Real and Virtual Environments


Book Description

The current popular and scientific interest in virtual environments has provided a new impetus for investigating binaural and spatial hearing. However, the many intriguing phenomena of spatial hearing have long made it an exciting area of scientific inquiry. Psychophysical and physiological investigations of spatial hearing seem to be converging on common explanations of underlying mechanisms. These understandings have in turn been incorporated into sophisticated yet mathematically tractable models of binaural interaction. Thus, binaural and spatial hearing is one of the few areas in which professionals are soon likely to find adequate physiological explanations of complex psychological phenomena that can be reasonably and usefully approximated by mathematical and physical models. This volume grew out of the Conference on Binaural and Spatial Hearing, a four-day event held at Wright-Patterson Air Force Base in response to rapid developments in binaural and spatial hearing research and technology. Meant to be more than just a proceedings, it presents chapters that are longer than typical proceedings papers and contain considerably more review material, including extensive bibliographies in many cases. Arranged into topical sections, the chapters represent major thrusts in the recent literature. The authors of the first chapter in each section have been encouraged to take a broad perspective and review the current state of literature. Subsequent chapters in each section tend to be somewhat more narrowly focused, and often emphasize the authors' own work. Thus, each section provides overview, background, and current research on a particular topic. This book is significant in that it reviews the important work during the past 10 to 15 years, and provides greater breadth and depth than most of the previous works.




Principles and Applications of Spatial Hearing


Book Description

Section 3. Capturing and controlling the spatial sound field. A study on 3D sound image control by two loudspeakers located in the transverse plane / K. Iida, T. Ishii, and Y. Ishii. Selective listening point audio based on blind signal separation and 3D audio effect / T. Nishino [und weitere]. Selective listening point audio based on blind signal separation and 3D audio effect / T. Nishino. Sweet spot size in virtual sound reproduction : A temporal analysis / Y. Lacouture Parodi and P. Rubak. Psychoacoustic evaluation of different methods for creating individualized, headphone-presented virtual auditory space from B-format room impulse responses / A. Kan, C. Jin, and A. van Schaik. Effects of microphone arrangements on the accuracy of a spherical microphone array (SENZI) in acquiring high-definition 3D sound space information / J. Kodama [und weitere]. Perception-based reproduction of spatial sound with directional audio coding / V. Pulkki [und weitere]. Capturing and recreating auditory virtual reality / R. Duraiswami [und weitere]. Reconstructing sound source directivity in virtual acoustic environments / M. Noisternig, F. Zotter, and B.F.G. Katz. Implementation of real-time room auralization using a surrounding loudspeaker array / T. Okamoto [und weitere]. Spatialisation in audio augmented reality using finger snaps / H. Gamper and T. Lokki. Generation of sound ball : Its theory and implementation / Y.-H. Kim [und weitere]. Estimation of high-resolution sound properties for realizing an editable sound-space system / T. Okamoto, Y. Iwaya, and Y. Suzuki -- Section 4. Applying virtual sound techniques in the real world. Binaural hearing assistance system based on frequency domain binaural model / T. Usagawa and Y. Chisaki. A spatial auditory display for telematic music performances / J. Braasch [und weitere]. Auditory orientation training system developed for blind people using PC-based wide-range 3-D sound technology / Y. Seki [und weitere]. Mapping musical scales onto virtual 3D spaces / J. Villegas and M. Cohen. Sonifying head-related transfer unctions / D. Cabrera and W.L. Martens. Effects of spatial cues on detectability of alarm signals in noisy environments / N. Kuroda [und weitere]. Binaural technique for active noise control assessment / Y. Watanabe and H. Hamada




Virtual Reality


Book Description

Despite widespread interest in virtual reality, research and development efforts in synthetic environments (SE)â€"the field encompassing virtual environments, teleoperation, and hybridsâ€"have remained fragmented. Virtual Reality is the first integrated treatment of the topic, presenting current knowledge along with thought-provoking vignettes about a future where SE is commonplace. This volume discusses all aspects of creating a system that will allow human operators to see, hear, smell, taste, move about, give commands, respond to conditions, and manipulate objects effectively in a real or virtual environment. The committee of computer scientists, engineers, and psychologists on the leading edge of SE development explores the potential applications of SE in the areas of manufacturing, medicine, education, training, scientific visualization, and teleoperation in hazardous environments. The committee also offers recommendations for development of improved SE technology, needed studies of human behavior and evaluation of SE systems, and government policy and infrastructure.