Optimizing Health Monitoring Systems with Wireless Technology


Book Description

The digital transformation of healthcare delivery is in full swing. Health monitoring is increasingly becoming more effective, efficient, and timely through mobile devices that are now widely available. This, as well as wireless technology, is essential to assessing, diagnosing, and treating medical ailments. However, systems and applications that boost wellness must be properly designed and regulated in order to protect the patient and provide the best care. Optimizing Health Monitoring Systems With Wireless Technology is an essential publication that focuses on critical issues related to the design, development, and deployment of wireless technology solutions for healthcare and wellness. Highlighting a broad range of topics including solution evaluation, privacy and security, and policy and regulation, this book is ideally designed for clinicians, hospital directors, hospital managers, consultants, health IT developers, healthcare providers, engineers, software developers, policymakers, researchers, academicians, and students.




Health Monitoring Systems


Book Description

Remote health monitoring using wearable sensors is an important research area involving several key steps: physiological parameter sensing and data acquisition, data analysis, data security, data transmission to caregivers, and clinical intervention, all of which play a significant role to form a closed loop system. Subject-specific behavioral and clinical traits, coupled with individual physiological differences, necessitate a personalized healthcare delivery model for around-the-clock monitoring within the home environment. Cardiovascular disease monitoring is an illustrative application domain where research has been instrumental in enabling a personalized closed-loop monitoring system, which has been showcased in this book. Health Monitoring Systems: An Enabling Technology for Patient Care provides a holistic overview of state-of-the-art monitoring systems facilitated by Internet of Things (IoT) technology. The book lists out the details on biomedical signal acquisition, processing, and data security, the fundamental building blocks towards an ambulatory health monitoring infrastructure. The fundamentals have been complimented with other relevant topics including applications which provide an in-depth view on remote health monitoring systems. Key Features: Presents examples of state-of-the-art health monitoring systems using IoT infrastructure Covers the full spectrum of physiological sensing, data acquisition, processing, and data security Provides relevant example applications demonstrating the benefits of technological advancements aiding disease prognosis This book serves as a beginner’s guide for engineering students of electrical and computer science, practicing engineers, researchers, and scientists who are interested in having an overview of pervasive health monitoring systems using body-worn sensors operating outside the hospital environment. It could also be recommended as a reference for a graduate or master’s level course on biomedical instrumentation and signal processing.




U-Healthcare Monitoring Systems


Book Description

U-Healthcare Monitoring Systems: Volume One: Design and Applications focuses on designing efficient U-healthcare systems which require the integration and development of information technology service/facilities, wireless sensors technology, wireless communication tools, and localization techniques, along with health management monitoring, including increased commercialized service or trial services. These u-healthcare systems allow users to check and remotely manage the health conditions of their parents. Furthermore, context-aware service in u-healthcare systems includes a computer which provides an intelligent service based on the user’s different conditions by outlining appropriate information relevant to the user’s situation. This volume will help engineers design sensors, wireless systems and wireless communication embedded systems to provide an integrated u-healthcare monitoring system. This volume provides readers with a solid basis in the design and applications of u-healthcare monitoring systems. Provides a solid basis in the design and applications of the u-healthcare monitoring systems Illustrates the concept of the u-healthcare monitoring system and its requirements, with a specific focus on the medical sensors and wireless sensors communication Presents a multidisciplinary volume that includes different applications of the monitoring system which highlight the main features for biomedical sensor devices




Model-based Health Monitoring of Hybrid Systems


Book Description

This book systematically presents a comprehensive framework and effective techniques for in-depth analysis, clear design procedure, and efficient implementation of diagnosis and prognosis algorithms for hybrid systems. It offers an overview of the fundamentals of diagnosis\prognosis and hybrid bond graph modeling. This book also describes hybrid bond graph-based quantitative fault detection, isolation and estimation. Moreover, it also presents strategies to track the system mode and predict the remaining useful life under multiple fault condition. A real world complex hybrid system—a vehicle steering control system—is studied using the developed fault diagnosis methods to show practical significance. Readers of this book will benefit from easy-to-understand fundamentals of bond graph models, concepts of health monitoring, fault diagnosis and failure prognosis, as well as hybrid systems. The reader will gain knowledge of fault detection and isolation in complex systems including those with hybrid nature, and will learn state-of-the-art developments in theory and technologies of fault diagnosis and failure prognosis for complex systems.




Structural Health Monitoring of Civil Infrastructure Systems


Book Description

Structural health monitoring is an extremely important methodology in evaluating the ‘health’ of a structure by assessing the level of deterioration and remaining service life of civil infrastructure systems. This book reviews key developments in research, technologies and applications in this area of civil engineering. It discusses ways of obtaining and analysing data, sensor technologies and methods of sensing changes in structural performance characteristics. It also discusses data transmission and the application of both individual technologies and entire systems to bridges and buildings. With its distinguished editors and international team of contributors, Structural health monitoring of civil infrastructure systems is a valuable reference for students in civil and structural engineering programs as well as those studying sensors, data analysis and transmission at universities. It will also be an important source for practicing civil engineers and designers, engineers and researchers developing sensors, network systems and methods of data transmission and analysis, policy makers, inspectors and those responsible for the safety and service life of civil infrastructure. Reviews key developments in research, technologies and applications Discusses systems used to obtain and analyse data and sensor technologies Assesses methods of sensing changes in structural performance




Structural Health Monitoring Damage Detection Systems for Aerospace


Book Description

This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students. This article/publication is based upon work from COST Action CA18203 (ODIN - http://odin-cost.com/), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation.




Optimizing Health Monitoring Systems With Wireless Technology


Book Description

The digital transformation of healthcare delivery is in full swing. Health monitoring is increasingly becoming more effective, efficient, and timely through mobile devices that are now widely available. This, as well as wireless technology, is essential to assessing, diagnosing, and treating medical ailments. However, systems and applications that boost wellness must be properly designed and regulated in order to protect the patient and provide the best care. Optimizing Health Monitoring Systems With Wireless Technology is an essential publication that focuses on critical issues related to the design, development, and deployment of wireless technology solutions for healthcare and wellness. Highlighting a broad range of topics including solution evaluation, privacy and security, and policy and regulation, this book is ideally designed for clinicians, hospital directors, hospital managers, consultants, health IT developers, healthcare providers, engineers, software developers, policymakers, researchers, academicians, and students.




AI and Machine Learning Paradigms for Health Monitoring System


Book Description

This book embodies principles and applications of advanced soft computing approaches in engineering, healthcare and allied domains directed toward the researchers aspiring to learn and apply intelligent data analytics techniques. The first part covers AI, machine learning and data analytics tools and techniques and their applications to the class of several hospital and health real-life problems. In the later part, the applications of AI, ML and data analytics shall be covered over the wide variety of applications in hospital, health, engineering and/or applied sciences such as the clinical services, medical image analysis, management support, quality analysis, bioinformatics, device analysis and operations. The book presents knowledge of experts in the form of chapters with the objective to introduce the theme of intelligent data analytics and discusses associated theoretical applications. At last, it presents simulation codes for the problems included in the book for better understanding for beginners.




Wearable Monitoring Systems


Book Description

As diverse as tomorrow’s society constituent groups may be, they will share the common requirements that their life should become safer and healthier, offering higher levels of effectiveness, communication and personal freedom. The key common part to all potential solutions fulfilling these requirements is wearable embedded systems, with longer periods of autonomy, offering wider functionality, more communication possibilities and increased computational power. As electronic and information systems on the human body, their role is to collect relevant physiological information, and to interface between humans and local and/or global information systems. Within this context, there is an increasing need for applications in diverse fields, from health to rescue to sport and even remote activities in space, to have real-time access to vital signs and other behavioral parameters for personalized healthcare, rescue operation planning, etc. This book’s coverage will span all scientific and technological areas that define wearable monitoring systems, including sensors, signal processing, energy, system integration, communications, and user interfaces. Six case studies will be used to illustrate the principles and practices introduced.




Occupational Health and Workplace Monitoring at Chemical Agent Disposal Facilities


Book Description

In keeping with a congressional mandate (Public Law 104-484) and the Chemical Weapons Convention, the United States is currently destroying its chemical weapons stockpile. The Army must ensure that the chemical demilitarization workforce is protected from the risks of exposure to hazardous chemicals during disposal operations and during and after facility closure. Good industrial practices developed in the chemical and nuclear energy industries and other operations that involve the processing of hazardous materials include workplace monitoring of hazardous species and a systematic occupational health program for monitoring workers' activities and health. In this report, the National Research Council Committee on Review and Evaluation of the Army Chemical Stockpile Disposal Program examines the methods and systems used at JACADS and TOCDF, the two operational facilities, to monitor the concentrations of airborne and condensed-phase chemical agents, agent breakdown products, and other substances of concern. The committee also reviews the occupational health programs at these sites, including their industrial hygiene and occupational medicine components. Finally, it evaluates the nature, quality, and utility of records of workplace chemical monitoring and occupational health programs.