Heat and Mass Transfer Intensification and Shape Optimization


Book Description

Is the heat and mass transfer intensification defined as a new paradigm of process engineering, or is it just a common and old idea, renamed and given the current taste? Where might intensification occur? How to achieve intensification? How the shape optimization of thermal and fluidic devices leads to intensified heat and mass transfers? To answer these questions, Heat & Mass Transfer Intensification and Shape Optimization: A Multi-scale Approach clarifies the definition of the intensification by highlighting the potential role of the multi-scale structures, the specific interfacial area, the distribution of driving force, the modes of energy supply and the temporal aspects of processes. A reflection on the methods of process intensification or heat and mass transfer enhancement in multi-scale structures is provided, including porous media, heat exchangers, fluid distributors, mixers and reactors. A multi-scale approach to achieve intensification and shape optimization is developed and clearly explained. Providing readers with a tool box of reflections, techniques, methods, supported by literature reviews, Heat & Mass Transfer Intensification and Shape Optimization: A Multi-scale Approach will be a key guide for students, a teaching aid for lecturers and a source of inspiration for future research subjects.




Intensification of Sorption Processes


Book Description

Intensification of Sorption Processes: Active and Passive Mechanisms introduces a number of selected, advanced topics in sorption processes/process intensification, covering both theoretical and applicable aspects. The first part of the book is devoted to the study of sorption processes based on active mechanisms, including ultrasonic, microwave, high-gravity, electrical and magnetic fields, while the second part covers passive mechanisms like nanostructures and nanofluids, membrane, supercritical fluids and sorption processes based on geometry design and equipment structure. The focus of the book is on key aspects of novel process intensification technologies (processes and equipment), i.e., absorption and adsorption, working principles, and design and applications. - Covers all developments in the field of active and passive mechanisms for sorption processes - Introduces basic principles of any intensified sorption process, along with details of equipment - Evaluates industrial upscaling, economic evaluation/justification, future opportunities and challenges for each sorption process




Advanced Polytopic Projects


Book Description

This book focuses on new developments in polytopic projects, particularly on implementation domains and case studies, as well as high-dimensional methodology. Polytopic projects are based on a general reference architecture inspired and shared by the functional organization of organisms and enterprises as informational and cognitive systems, the scientific and engineering methodology and the operational structure of existing self-evolvable and self-sustainable systems.




Polytopic Roadmaps


Book Description

This book is useful to engineers, researchers, entrepreneurs, and students in different branches of production, engineering, and systems sciences. The polytopic roadmaps are the guidelines inspired by the development stages of cognitive-intelligent systems, and expected to become powerful instruments releasing an abundance of new capabilities and structures for complex engineering systems implementation. The 4D approach developed in previous monographs and correlated with industry 4.0and Fourth Industrial Revolution is continued here toward higher dimensions approaches correlated with polytopic operations, equipment, technologies, industries, and societies. Methodology emphasizes the role of doubling, iteration, dimensionality, and cyclicality around the center, of periodic tables and of conservative and exploratory strategies. Partitions, permutations, classifications, and complexification, as polytopic chemistry, are the elementary operations analyzed. Multi-scale transfer, cyclic operations, conveyors, and assembly lines are the practical examples of operations and equipment. Polytopic flow sheets, online analytical processing, polytopic engineering designs, and reality-inspired engineering are presented. Innovative concepts such as Industry 5.0, polytopic industry, Society 5.0, polytopic society, cyber physical social systems, industrial Internet, and digital twins have been discussed. The general polytopic roadmaps, (GPTR), are proposed as universal guidelines and as common methodologies to synthesize the systemic thinking and capabilities for growing complexity projects implementation.




Sorption Enhanced Reaction Processes


Book Description

This book investigates the development of sorption enhanced reaction processes (SERPs) with detailed modelling and simulation, design and operation of units. SERPs are processes intensified by combining adsorption and reaction, reaction and membranes or reaction/adsorption/membranes in a single unit in order to overcome thermodynamic limitations of conversion in reversible reactions. The focus here is on gas phase and liquid phase processes involving different technologies, including pressure swing adsorptive reactors, membrane reactors and simulated moving bed reactors. Emphasis is also given to presenting data and practical applications of SERP products.Sorption Enhanced Reaction Processes provides undergraduate and graduate students of chemistry and chemical engineering, researchers and industrial engineers with a clear path towards process development of SERP, whatever the area of application.




Climate Change and Green Chemistry of CO2 Sequestration


Book Description

The book comprises state-of-the-art scientific reviews on carbon management strategies in response to climate change. It provides in-depth information on topics relating to recent advances in carbon capture technology and its reuse in value added products. It features contributions of leading scientists and technocrats on topics including climate change and carbon sequestration, lowering carbon footprint CO2 capture, low carbon imperatives in oil industry, CO2 as refrigerant in cold-chain application, carbonic anhydrase-mediated carbon sequestration and utilization, chemical looping combustion with Indian coal, CO2 conversion to chemicals, algae based biofuels, and carbon capture patent landscaping analysis. The contents of this book will be helpful for research scholars, post-graduate students, industry, agricultural scientists and policy makers/planners.




Roads to Higher Dimensional Polytopic Projects


Book Description

High dimensional reference architectures presented here allows confronting and prevailing over the growing complexity of polytopic projects implementations. Such projects should be envisaged giving that conventional systems operations, equipments, methodologies or organizations will reach their limits for self-evolvability in high complexity conditions. Self-evolvable high complexity systems are based on high dimensional polytopic reference architectures. Polytope is the general term of the sequence: point, line, polygon, polyhedron and so on.The polytopic projects are targeting the artificiality, not only for materials where it is well known and applied, but also for biological, cognitive, intelligent and mathematical systems. The book highlights the polytopic projects basic similarity despite the noticeable difference as domains of application. The roads to follow and the algebra of changing roads are emphasized. The book is divided in 9 chapters. Chapter 1 introduces the Polytopic Roadmap to 4D and beyond. The role for the dialogue of processes in duality of the non-Aristotelian Logic of Contradiction and of Included Middle is emphasized for different domains. Chapter 2 refers to chemical systems. Supramolecular chemistry, metal organic frameworks, MOF, and reaction networks, are the examples considered in the frame of polytopic chemistry. Chapter 3 refers to biological systems. Biological dynamical hierarchies and quasi-species are the considered case studies. Technological and scientific projects targeting artificiality for cells and viruses are considered. Chapter 4 refers to cognitive systems. Developmental stages, formal and relational concepts analysis, and neural coding are considered here. The roles of the 4D systems of systems of systems and of conceptual 4D-cube are emphasized. Artificiality for cognitive systems is the object of study. Chapter 5 refers to mathematical systems. Modeling levels and the 4D digital twins are discussed. Hopf monoids as tools for the study of combinations and separations, dual graded graphs and V-models are informally presented. Chapter 6 refers to application of formal concept analysis, FCA, for high dimensional separations, nesting and drug delivery. Chapter 7 refers to polytopic engineering systems as multiscale transfer, distributors-collectors, cyclic operations, middle vessel columns, mixing, assembly and designs. Equipments have been characterized using Polytopic Roadmaps and classified by Periodic Tables. Chapter 8 introduces polytopic industry, economy, society and sustainability. Chapter 9 outlines new domains of interest as arts and architecture, transdisciplinarity, complex systems and unity of sciences and engineering. Polytopic Roadmaps are proposed as Method for experts from various fields to synthesize their thinking and capabilities into new projects implementation to face and surpass high complexity. A repetitive finding of this book is that self-evolvability observed in physical systems is based on the same directed sequence of reference architectures as the self-evolvability of concepts in our mind. Continuing to develop the field of self-evolvable systems and presenting the polytopic roadmaps for 4D and beyond advances in ever growing complexity domains, the book will be useful to engineers, researchers, entrepreneurs and students in different branches of production, complex systems sciences and engineering, ecology and applied mathematics.




Process Intensification


Book Description

Intensified processes have found widespread application in the chemical and petrochemical industries. The use of intensified systems allows for a reduction of operating costs and supports the “greening” of chemical processes. However, the design of intensified equipment requires special methodologies. This book describes the fundamentals and applications of these design methods, making it a valuable resource for use in both industry and academia.




Process Analysis, Design, and Intensification in Microfluidics and Chemical Engineering


Book Description

Microfluidics represent great potential for chemical processes design, development, optimization, and chemical engineering bolsters the project design of industrial processes often found in large chemical plants. Together, microfluidics and chemical engineering can lead to a more complete and comprehensive process. Process Analysis, Design, and Intensification in Microfluidics and Chemical Engineering provides emerging research exploring the theoretical and practical aspects of microfluidics and its application in chemical engineering with the intention of building pathways for new processes and product developments in industrial areas. Featuring coverage on a broad range of topics such as design techniques, hydrodynamics, and numerical modelling, this book is ideally designed for engineers, chemists, microfluidics and chemical engineering companies, academicians, researchers, and students.




Process Intensification


Book Description

Process Intensification: Engineering for Efficiency, Sustainability and Flexibility is the first book to provide a practical working guide to understanding process intensification (PI) and developing successful PI solutions and applications in chemical process, civil, environmental, energy, pharmaceutical, biological, and biochemical systems. Process intensification is a chemical and process design approach that leads to substantially smaller, cleaner, safer, and more energy efficient process technology. It improves process flexibility, product quality, speed to market and inherent safety, with a reduced environmental footprint. This book represents a valuable resource for engineers working with leading-edge process technologies, and those involved research and development of chemical, process, environmental, pharmaceutical, and bioscience systems. - No other reference covers both the technology and application of PI, addressing fundamentals, industry applications, and including a development and implementation guide - Covers hot and high growth topics, including emission prevention, sustainable design, and pinch analysis - World-class authors: Colin Ramshaw pioneered PI at ICI and is widely credited as the father of the technology