Fundamentals of Heat Exchanger Design


Book Description

Comprehensive and unique source integrates the material usually distributed among a half a dozen sources. * Presents a unified approach to modeling of new designs and develops the skills for complex engineering analysis. * Provides industrial insight to the applications of the basic theory developed.




Heat Exchanger Design Guide


Book Description

Heat Exchanger Design Guide: A Practical Guide for Planning, Selecting and Designing of Shell and Tube Exchangers takes users on a step-by-step guide to the design of heat exchangers in daily practice, showing how to determine the effective driving temperature difference for heat transfer. Users will learn how to calculate heat transfer coefficients for convective heat transfer, condensing, and evaporating using simple equations. Dew and bubble points and lines are covered, with all calculations supported with examples. This practical guide is designed to help engineers solve typical problems they might encounter in their day-to-day work, and will also serve as a useful reference for students learning about the field. The book is extensively illustrated with figures in support of the text and includes calculation examples to ensure users are fully equipped to select, design, and operate heat exchangers. Covers design method and practical correlations needed to design practical heat exchangers for process application Includes geometrical calculations for the tube and shell side, also covering boiling and condensation heat transfer Explores heat transfer coefficients and temperature differences Designed to help engineers solve typical problems they might encounter in their day-to-day work, but also ideal as a useful reference for students learning about the field




Mechanical Design of Heat Exchangers


Book Description

A tubular heat exchanger exemplifies many aspects of the challenge in designing a pressure vessel. High or very low operating pressures and temperatures, combined with sharp temperature gradients, and large differences in the stiffnesses of adjoining parts, are amongst the legion of conditions that behoove the attention of the heat exchanger designer. Pitfalls in mechanical design may lead to a variety of operational problems, such as tube-to-tubesheet joint failure, flanged joint leakage, weld cracks, tube buckling, and flow induced vibration. Internal failures, such as pass partition bowing or weld rip-out, pass partition gasket rib blow-out, and impingement actuated tube end erosion are no less menacing. Designing to avoid such operational perils requires a thorough grounding in several disciplines of mechanics, and a broad understanding of the inter relationship between the thermal and mechanical performance of heat exchangers. Yet, while there are a number of excellent books on heat ex changer thermal design, comparable effort in mechanical design has been non-existent. This apparent void has been filled by an assortment of national codes and industry standards, notably the "ASME Boiler and Pressure Vessel Code" and the "Standards of Tubular Exchanger Manufacturers Association. " These documents, in conjunction with scattered publications, form the motley compendia of the heat exchanger designer's reference source. The subject matter clearly beckons a methodical and comprehensive treatment. This book is directed towards meeting this need.




Heat Exchange Engineering: Design of heat exchangers


Book Description

The first of a two-volume work designed to provide information on the design aspects of thermal systems and to review research and development on the improvement of design and performance. Emphasis is placed on conservation aspects. This book focuses on the design of heat exchangers.




Fundamentals of Heat Exchanger Design


Book Description

Fundamentals of Heat Exchanger Design, Second Edition builds upon the widely-used First Edition, a text often considered to be the most prominent single-volume heat exchanger text on the market. The new and improved Second Edition serves as an equally comprehensive resource, updated to suit the latest technologies and design methods being used in the Heat Exchanger field. Written by First-Edition author Dusan P. Sekulic, this text addresses the latest developments in the industry, including a brand-new chapter on the manufacturing of compact heat exchangers. After opening with a basic introduction to heat exchanger types and design methods, the book goes on to cover more specialized topics such as such as the design of recuperators and regenerators, pressure drop analysis, geometric properties, flow friction, fouling and corrosion, and more. With many significant revisions throughout, this new edition offers more streamlined content while maintaining the consistent, detailed coverage of the fundamentals of the topic that readers appreciated in the First Edition. These unique features position the Second Edition of Fundamentals of Heat Exchanger Design as the ideal text for both engineering professionals and advanced students alike.




Heat Exchanger Design Handbook, Second Edition


Book Description

Completely revised and updated to reflect current advances in heat exchanger technology, Heat Exchanger Design Handbook, Second Edition includes enhanced figures and thermal effectiveness charts, tables, new chapter, and additional topics––all while keeping the qualities that made the first edition a centerpiece of information for practicing engineers, research, engineers, academicians, designers, and manufacturers involved in heat exchange between two or more fluids. See What’s New in the Second Edition: Updated information on pressure vessel codes, manufacturer’s association standards A new chapter on heat exchanger installation, operation, and maintenance practices Classification chapter now includes coverage of scrapped surface-, graphite-, coil wound-, microscale-, and printed circuit heat exchangers Thorough revision of fabrication of shell and tube heat exchangers, heat transfer augmentation methods, fouling control concepts and inclusion of recent advances in PHEs New topics like EMbaffle®, Helixchanger®, and Twistedtube® heat exchanger, feedwater heater, steam surface condenser, rotary regenerators for HVAC applications, CAB brazing and cupro-braze radiators Without proper heat exchanger design, efficiency of cooling/heating system of plants and machineries, industrial processes and energy system can be compromised, and energy wasted. This thoroughly revised handbook offers comprehensive coverage of single-phase heat exchangers—selection, thermal design, mechanical design, corrosion and fouling, FIV, material selection and their fabrication issues, fabrication of heat exchangers, operation, and maintenance of heat exchangers —all in one volume.




Engineering Flow and Heat Exchange


Book Description

Professor Levenspiel's text remains the most practical volume available on the design of heat transfer equipment - an excellent introduction to real-world applications for advanced undergraduates and an indispensable reference for professionals. Each chapter includes illustrative examples and problems.




Heat Exchanger Design Handbook


Book Description

"This comprehensive reference covers all the important aspects of heat exchangers (HEs)--their design and modes of operation--and practical, large-scale applications in process, power, petroleum, transport, air conditioning, refrigeration, cryogenics, heat recovery, energy, and other industries. Reflecting the author's extensive practical experienc




Heat Exchanger Design


Book Description

This Second Edition of the well-received work on design, construction, and operation of heat exchangers. Demonstrates how to apply theories of fluid mechanics and heat transfer to practical problems posed by design, testing, and installation of heat exchangers. Tables and data have been brought up to date, and there is new material on problems of vibration and fouling, and on optimization of energy use in the chemical process and manufacturing industries. Covers all basic principles of heat exchanger design, and addresses many specialized situations encountered in engineering applications.




Thermal Design of Heat Exchangers: A Numerical Approach


Book Description

This book is unique in adopting a numerical approach to the thermal design of heat exchangers. The computation of mean temperature difference, with accommodation of longitudinal conduction effects, makes full optimisation of the exchanger core possible. Sets of three partial differential equations for both contra-flow and cross-flow are established, and form the bases from which a range of methods of direct-sizing and stepwise rating may proceed. Optimisation of an exchanger for steady-state operation is achieved by an approach which allows maximum utilisation of the allowable pressure losses. Transient methods are covered, including the Method of Characteristics, and the Single-Blow method of testing is treated. Numerous aspects of low and high temperature design are discussed, and extensive references to the literature are provided. Schematic algorithms are listed to allow students and practitioners to construct their own solutions, and spline-fitting of data is discussed.