Heat Transfer in Process Engineering


Book Description

Cutting-edge heat transfer principles and design applications Apply advanced heat transfer concepts to your chemical, petrochemical, and refining equipment designs using the detailed information contained in this comprehensive volume. Filled with valuable graphs, tables, and charts, Heat Transfer in Process Engineering covers the latest analytical and empirical methods for use with current industry software. Select heat transfer equipment, make better use of design software, calculate heat transfer coefficients, troubleshoot your heat transfer process, and comply with design and construction standards. Heat Transfer in Process Engineering allows you to: Review heat transfer principles with a direct focus on process equipment design Design, rate, and specify shell and tube, plate, and hairpin heat exchangers Design, rate, and specify air coolers with plain or finned tubes Design, rate, and specify different types of condensers with tube or shellside condensation for pure fluids or multicomponent mixtures Understand the principles and correlations of boiling heat transfer, with their limits on and applications to different types of reboiler design Apply correlations for fired heater ratings, for radiant and convective zones, and calculate fuel efficiency Obtain a set of useful Excel worksheets for process heat transfer calculations




Heat Transfer Engineering


Book Description

Heat Transfer Engineering: Fundamentals and Techniques reviews the core mechanisms of heat transfer and provides modern methods to solve practical problems encountered by working practitioners, with a particular focus on developing engagement and motivation. The book reviews fundamental concepts in conduction, forced convection, free convection, boiling, condensation, heat exchangers and mass transfer succinctly and without unnecessary exposition. Throughout, copious examples drawn from current industrial practice are examined with an emphasis on problem-solving for interest and insight rather than the procedural approaches often adopted in courses. The book contains numerous important solved and unsolved problems, utilizing modern tools and computational sources wherever relevant. A subsection on common issues and recent advances is presented in each chapter, encouraging the reader to explore a greater diversity of problems. - Reveals physical solutions alongside their application in practical problems, with an aim of generating interest from reality rather than dry exposition - Reviews pertinent, contemporary computational tools, including emerging topics such as machine learning - Describes the complexity of modern heat transfer in an engaging and conversational style, greatly adding to the uniqueness and accessibility of the book







An Introduction to Fluid Mechanics and Heat Transfer


Book Description

First published in 1975 as the third edition of a 1957 original, this book presents the fundamental ideas of fluid flow, viscosity, heat conduction, diffusion, the energy and momentum principles, and the method of dimensional analysis. These ideas are subsequently developed in terms of their important practical applications, such as flow in pipes and channels, pumps, compressors and heat exchangers. Later chapters deal with the equation of fluid motion, turbulence and the general equations of forced convection. The final section discusses special problems in process engineering, including compressible flow in pipes, solid particles in fluid flow, flow through packed beds, condensation and evaporation. This book will be of value to anyone with an interest the wider applications of fluid mechanics and heat transfer.




Heat Transfer Fluids and Systems for Process and Energy Applications


Book Description

This book presents the basic principles and engineering data governing the process design of indirect heat transfer fluids and systems. It focuses on the selection of systems based on common engineering criteria such as reliability and cost, and particularly on energy conservation and safety.




Heat Transfer Applications for the Practicing Engineer


Book Description

This book serves as a training tool for individuals in industry and academia involved with heat transfer applications. Although the literature is inundated with texts emphasizing theory and theoretical derivations, the goal of this book is to present the subject of heat transfer from a strictly pragmatic point of view. The book is divided into four Parts: Introduction, Principles, Equipment Design Procedures and Applications, and ABET-related Topics. The first Part provides a series of chapters concerned with introductory topics that are required when solving most engineering problems, including those in heat transfer. The second Part of the book is concerned with heat transfer principles. Topics that receive treatment include Steady-state Heat Conduction, Unsteady-state Heat Conduction, Forced Convection, Free Convection, Radiation, Boiling and Condensation, and Cryogenics. Part three (considered the heart of the book) addresses heat transfer equipment design procedures and applications. In addition to providing a detailed treatment of the various types of heat exchangers, this part also examines the impact of entropy calculations on exchanger design, and operation, maintenance and inspection (OM&I), plus refractory and insulation effects. The concluding Part of the text examines ABET (Accreditation Board for Engineering and Technology) related topics of concern, including economies and finance, numerical methods, open-ended problems, ethics, environmental management, and safety and accident management.




Process Heat Transfer


Book Description

Process Heat Transfer is a reference on the design and implementation of industrial heat exchangers. It provides the background needed to understand and master the commercial software packages used by professional engineers in the design and analysis of heat exchangers. This book focuses on types of heat exchangers most widely used by industry: shell-and-tube exchangers (including condensers, reboilers and vaporizers), air-cooled heat exchangers and double-pipe (hairpin) exchangers. It provides a substantial introduction to the design of heat exchanger networks using pinch technology, the most efficient strategy used to achieve optimal recovery of heat in industrial processes. - Utilizes leading commercial software. Get expert HTRI Xchanger Suite guidance, tips and tricks previously available via high cost professional training sessions. - Details the development of initial configuration for a heat exchanger and how to systematically modify it to obtain an efficient final design. - Abundant case studies and rules of thumb, along with copious software examples, provide a complete library of reference designs and heuristics for readers to base their own designs on.




Heat Transfer and Fluid Flow in Biological Processes


Book Description

Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. - Provides a wide range of biological and clinical applications of fluid flow and heat transfer in biomedical technology - Covers topics such as electrokinetic transport, electroporation of cells and tissue dialysis, inert solute transport (insulin), thermal ablation of cancerous tissue, respiratory therapies, and associated medical technologies - Reviews the most recent advances in modeling techniques




Conduction Heat Transfer


Book Description

This introduction to conduction heat transfer blends a description of the necessary mathematics with contemporary engineering applications. Examples include: heat transfer in manufacturing processes, the cooling of electronic equipment and heat transfer in various applications.




Transport Phenomena in Micro Process Engineering


Book Description

In this book, the fundamentals of chemical engineering are presented with respect to applications in micro system technology, microfluidics, and transport processes within microstructures. Special features of the book include the state-of-the-art in micro process engineering, a detailed treatment of transport phenomena for engineers, and a design methodology from transport effects to economic considerations.