Principles of Heat Transfer in Porous Media


Book Description

Although the empirical treatment of fluid flow and heat transfer in porous media is over a century old, only in the last three decades has the transport in these heterogeneous systems been addressed in detail. So far, single-phase flows in porous media have been treated or at least formulated satisfactorily, while the subject of two-phase flow and the related heat-transfer in porous media is still in its infancy. This book identifies the principles of transport in porous media and compares the avalaible predictions based on theoretical treatments of various transport mechanisms with the existing experimental results. The theoretical treatment is based on the volume-averaging of the momentum and energy equations with the closure conditions necessary for obtaining solutions. While emphasizing a basic understanding of heat transfer in porous media, this book does not ignore the need for predictive tools; whenever a rigorous theoretical treatment of a phenomena is not avaliable, semi-empirical and empirical treatments are given.




Heat Transfer Solver


Book Description

Aimed at those familiar with the physical aspects of heat transfer problems and how to choose the imput data, this can be used to get quick answers to practical heat transfer problems and to determine heat transfer co-efficients, heat fluxes and temperatures, amongst others.




Buoyancy-Driven Flows


Book Description

Buoyancy is one of the main forces driving flows on our planet, especially in the oceans and atmosphere. These flows range from buoyant coastal currents to dense overflows in the ocean, and from avalanches to volcanic pyroclastic flows on the Earth's surface. This book brings together contributions by leading world scientists to summarize our present theoretical, observational, experimental and modeling understanding of buoyancy-driven flows. Buoyancy-driven currents play a key role in the global ocean circulation and in climate variability through their impact on deep-water formation. Buoyancy-driven currents are also primarily responsible for the redistribution of fresh water throughout the world's oceans. This book is an invaluable resource for advanced students and researchers in oceanography, geophysical fluid dynamics, atmospheric science and the wider Earth sciences who need a state-of-the-art reference on buoyancy-driven flows.







The Heat Transfer Problem Solver


Book Description

Comprehensive treatment of steady and unsteady state heat conduction, forced and free convection, thermal boundary layer theory, radiation and applications, and combined heat transfer mechanisms. Problem-solving strategies and attacks are included at the beginning of every chapter for each topic covered.




Heat Transfer


Book Description

This book provides engineers with the tools to solve real-world heat transfer problems. It includes advanced topics not covered in other books on the subject. The examples are complex and timely problems that are inherently interesting. It integrates Maple, MATLAB, FEHT, and Engineering Equation Solver (EES) directly with the heat transfer material.




Heat transfer


Book Description




Thermodynamics Problem Solver


Book Description

REA’s Thermodynamics Problem Solver Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. Answers to all of your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. They're perfect for undergraduate and graduate studies. This highly useful reference provides thorough coverage of pressure, work and heat, energy, entropy, first and second laws, ideal gas processes, vapor refrigeration cycles, mixtures, and solutions. For students in engineering, physics, and chemistry.




Essentials of Heat Transfer


Book Description

This is a modern, example-driven introductory textbook on heat transfer, with modern applications, written by a renowned scholar.




Solving Direct and Inverse Heat Conduction Problems


Book Description

This book presents a solution for direct and inverse heat conduction problems, discussing the theoretical basis for the heat transfer process and presenting selected theoretical and numerical problems in the form of exercises with solutions. The book covers one-, two- and three dimensional problems which are solved by using exact and approximate analytical methods and numerical methods. An accompanying CD-Rom includes computational solutions of the examples and extensive FORTRAN code.