Heating and Flow-field Studies on a Straight-wing Hypersonic Reentry Vehicle at Angles of Attack from 20 ̊to 80 ̊with Simulation of Real-gas Trends


Book Description

Data are presented from a series of phase-change heat transfer and flow visualization tests at Mach 7.4, 8, and 10.3 in air, Mach 19.5 in nitrogen, Mach 20.3 in helium, and Mach 6 in tetrafluoromethane (CF4) on the windward surface of a straight wing hypersonic reentry configuration for angles of attack from 20 deg to 80 deg. The results indicate that: (1) for hypersonic stream Mach numbers, the flow field over the straight-wing configuration is essentially independent of Mach number, (2) transition Reynolds number decreases with increasing angle of attack, (3) at some critical angle of attack, the wing-shock standoff distance is greatly increased and the stagnation line moves downstream from the wing leading edge, (4) value of the critical angle of attack is very sensitive to the flow shock density ratio or effective gamma, and (5) at angles of attack above the critical value for all gases, the nondimensional level of heat transfer to the wing is higher for the higher shock density ratio flows.




Heating and Flow-filled Studies on a Straight-wing Hypersonic Reentry Vehicle at Angles of Attack from 20° to 80° with Simulation of Real-gas Trends


Book Description

Data are presented from a series of phase-change heat transfer and flow visualization tests at Mach 7.4, 8, and 10.3 in air, Mach 19.5 in nitrogen, Mach 20.3 in helium, and Mach 6 in tetrafluoromethane (CF4) on the windward surface of a straight wing hypersonic reentry configuration for angles of attack from 20° to 80°.







NASA Technical Note


Book Description