Heron Streaming


Book Description

This book provides both a basic understanding of stream processing in general, and practical guidance for development and research with Apache Heron in particular. It delivers to developers of streaming applications basic and systematic knowledge about Heron, which is today only scattered across project documents, technique blogs and code snippets on the Web. The book is organized in four parts: Part I describes basic knowledge about stream processing, Apache Storm, and Apache Heron (Incubating), and also introduces the Heron source repository. Part II then goes into details and describes two data models to write Heron topologies and often used topology features, including stateful processing. This part is especially targeted at software developers who write topologies using Heron APIs. Next, part III describes Heron tools, including the command-line interface and the user interface, needed to manage a single topology or multiple topologies in a data center. This part is particularly aimed at operators who deploy and manage running jobs. Eventually, part IV describes the Heron source code and how to customize or extend Heron. This part is especially suggested for software engineers who would like to contribute code to the Heron repository and who are curious about Heron insights. Overall, this book aims at professionals who want to process streaming data based on Apache Heron. A basic knowledge of Java and Bash commands for Linux is assumed.




Streaming Systems


Book Description

Streaming data is a big deal in big data these days. As more and more businesses seek to tame the massive unbounded data sets that pervade our world, streaming systems have finally reached a level of maturity sufficient for mainstream adoption. With this practical guide, data engineers, data scientists, and developers will learn how to work with streaming data in a conceptual and platform-agnostic way. Expanded from Tyler Akidau’s popular blog posts "Streaming 101" and "Streaming 102", this book takes you from an introductory level to a nuanced understanding of the what, where, when, and how of processing real-time data streams. You’ll also dive deep into watermarks and exactly-once processing with co-authors Slava Chernyak and Reuven Lax. You’ll explore: How streaming and batch data processing patterns compare The core principles and concepts behind robust out-of-order data processing How watermarks track progress and completeness in infinite datasets How exactly-once data processing techniques ensure correctness How the concepts of streams and tables form the foundations of both batch and streaming data processing The practical motivations behind a powerful persistent state mechanism, driven by a real-world example How time-varying relations provide a link between stream processing and the world of SQL and relational algebra




Heron Streaming


Book Description

This book provides both a basic understanding of stream processing in general, and practical guidance for development and research with Apache Heron in particular. It delivers to developers of streaming applications basic and systematic knowledge about Heron, which is today only scattered across project documents, technique blogs and code snippets on the Web. The book is organized in four parts: Part I describes basic knowledge about stream processing, Apache Storm, and Apache Heron (Incubating), and also introduces the Heron source repository. Part II then goes into details and describes two data models to write Heron topologies and often used topology features, including stateful processing. This part is especially targeted at software developers who write topologies using Heron APIs. Next, part III describes Heron tools, including the command-line interface and the user interface, needed to manage a single topology or multiple topologies in a data center. This part is particularly aimed at operators who deploy and manage running jobs. Eventually, part IV describes the Heron source code and how to customize or extend Heron. This part is especially suggested for software engineers who would like to contribute code to the Heron repository and who are curious about Heron insights. Overall, this book aims at professionals who want to process streaming data based on Apache Heron. A basic knowledge of Java and Bash commands for Linux is assumed.




Building Data Streaming Applications with Apache Kafka


Book Description

Design and administer fast, reliable enterprise messaging systems with Apache Kafka About This Book Build efficient real-time streaming applications in Apache Kafka to process data streams of data Master the core Kafka APIs to set up Apache Kafka clusters and start writing message producers and consumers A comprehensive guide to help you get a solid grasp of the Apache Kafka concepts in Apache Kafka with pracitcalpractical examples Who This Book Is For If you want to learn how to use Apache Kafka and the different tools in the Kafka ecosystem in the easiest possible manner, this book is for you. Some programming experience with Java is required to get the most out of this book What You Will Learn Learn the basics of Apache Kafka from scratch Use the basic building blocks of a streaming application Design effective streaming applications with Kafka using Spark, Storm &, and Heron Understand the importance of a low -latency , high- throughput, and fault-tolerant messaging system Make effective capacity planning while deploying your Kafka Application Understand and implement the best security practices In Detail Apache Kafka is a popular distributed streaming platform that acts as a messaging queue or an enterprise messaging system. It lets you publish and subscribe to a stream of records, and process them in a fault-tolerant way as they occur. This book is a comprehensive guide to designing and architecting enterprise-grade streaming applications using Apache Kafka and other big data tools. It includes best practices for building such applications, and tackles some common challenges such as how to use Kafka efficiently and handle high data volumes with ease. This book first takes you through understanding the type messaging system and then provides a thorough introduction to Apache Kafka and its internal details. The second part of the book takes you through designing streaming application using various frameworks and tools such as Apache Spark, Apache Storm, and more. Once you grasp the basics, we will take you through more advanced concepts in Apache Kafka such as capacity planning and security. By the end of this book, you will have all the information you need to be comfortable with using Apache Kafka, and to design efficient streaming data applications with it. Style and approach A step-by –step, comprehensive guide filled with practical and real- world examples




Field and Stream


Book Description




Streams


Book Description

The ecology of rivers and streams; Types of rivers; The biota of rivers; Management, conservation, and restoration of rivers.




Grokking Streaming Systems


Book Description

A friendly, framework-agnostic tutorial that will help you grok how streaming systems work—and how to build your own! In Grokking Streaming Systems you will learn how to: Implement and troubleshoot streaming systems Design streaming systems for complex functionalities Assess parallelization requirements Spot networking bottlenecks and resolve back pressure Group data for high-performance systems Handle delayed events in real-time systems Grokking Streaming Systems is a simple guide to the complex concepts behind streaming systems. This friendly and framework-agnostic tutorial teaches you how to handle real-time events, and even design and build your own streaming job that’s a perfect fit for your needs. Each new idea is carefully explained with diagrams, clear examples, and fun dialogue between perplexed personalities! About the technology Streaming systems minimize the time between receiving and processing event data, so they can deliver responses in real time. For applications in finance, security, and IoT where milliseconds matter, streaming systems are a requirement. And streaming is hot! Skills on platforms like Spark, Heron, and Kafka are in high demand. About the book Grokking Streaming Systems introduces real-time event streaming applications in clear, reader-friendly language. This engaging book illuminates core concepts like data parallelization, event windows, and backpressure without getting bogged down in framework-specific details. As you go, you’ll build your own simple streaming tool from the ground up to make sure all the ideas and techniques stick. The helpful and entertaining illustrations make streaming systems come alive as you tackle relevant examples like real-time credit card fraud detection and monitoring IoT services. What's inside Implement and troubleshoot streaming systems Design streaming systems for complex functionalities Spot networking bottlenecks and resolve backpressure Group data for high-performance systems About the reader No prior experience with streaming systems is assumed. Examples in Java. About the author Josh Fischer and Ning Wang are Apache Committers, and part of the committee for the Apache Heron distributed stream processing engine. Table of Contents PART 1 GETTING STARTED WITH STREAMING 1 Welcome to Grokking Streaming Systems 2 Hello, streaming systems! 3 Parallelization and data grouping 4 Stream graph 5 Delivery semantics 6 Streaming systems review and a glimpse ahead PART 2 STEPPING UP 7 Windowed computations 8 Join operations 9 Backpressure 10 Stateful computation 11 Wrap-up: Advanced concepts in streaming systems




Designing Big Data Platforms


Book Description

DESIGNING BIG DATA PLATFORMS Provides expert guidance and valuable insights on getting the most out of Big Data systems An array of tools are currently available for managing and processing data—some are ready-to-go solutions that can be immediately deployed, while others require complex and time-intensive setups. With such a vast range of options, choosing the right tool to build a solution can be complicated, as can determining which tools work well with each other. Designing Big Data Platforms provides clear and authoritative guidance on the critical decisions necessary for successfully deploying, operating, and maintaining Big Data systems. This highly practical guide helps readers understand how to process large amounts of data with well-known Linux tools and database solutions, use effective techniques to collect and manage data from multiple sources, transform data into meaningful business insights, and much more. Author Yusuf Aytas, a software engineer with a vast amount of big data experience, discusses the design of the ideal Big Data platform: one that meets the needs of data analysts, data engineers, data scientists, software engineers, and a spectrum of other stakeholders across an organization. Detailed yet accessible chapters cover key topics such as stream data processing, data analytics, data science, data discovery, and data security. This real-world manual for Big Data technologies: Provides up-to-date coverage of the tools currently used in Big Data processing and management Offers step-by-step guidance on building a data pipeline, from basic scripting to distributed systems Highlights and explains how data is processed at scale Includes an introduction to the foundation of a modern data platform Designing Big Data Platforms: How to Use, Deploy, and Maintain Big Data Systems is a must-have for all professionals working with Big Data, as well researchers and students in computer science and related fields.




Forest and Stream


Book Description




Field & Stream


Book Description

FIELD & STREAM, America’s largest outdoor sports magazine, celebrates the outdoor experience with great stories, compelling photography, and sound advice while honoring the traditions hunters and fishermen have passed down for generations.