Heterophase Polymerization


Book Description

Heterophase polymerization is a century-old technology with a wide range of relevant industrial applications, including coatings, adhesives, rubbers, and many other specialized biomedical and high-performance materials. However, due to its multiscale complexity, it still remains a challenging research topic. It is a broad field covering all heterogeneous polymerization processes that result in polymer dispersions. Its technical realizations comprise emulsion polymerization, dispersion polymerization, suspension polymerization, miniemulsion polymerization, microemulsion polymerization, and others. This book is devoted to the science and technology of heterophase polymerization, considering it a generic term as well as an umbrella expression for all of its technical realizations. It presents, from a modern perspective, the basic concepts and principles required to understand the kinetics and thermodynamics of heterophase polymerization at the atomistic, molecular, macromolecular, supramolecular, colloidal, microscopic, mesoscopic, and macroscopic scales. It critically discusses the important physicochemical mechanisms involved in heterophase polymerization, such as nucleation, particle aggregation, mass transfer, swelling, spontaneous emulsification, and polymerization kinetics, along with the experimental evidences at hand.




Heterophase Network Polymers


Book Description

This volume explains the theory and experimental investigations in the preparation of heterophase polymer network materials through cure reaction-induced microphase separation (CRIMPS). It describes the synthesis of a new family of block- and graft-copolymers with controlled solubility in epoxies and characterizes CRIMPS processes using novel applications of known methods such as nuclear magnetic resonance, electron spin resonance and photochemistry. The text develops a new method for characterizing the molecular mass distribution (MMD) of linear and network polymers using thermomechanical analysis data, as well as new methods for determining internal stresses and flaw formation during thermoset curing. The CRIMPS theory will be helpful for researchers and engineers designing and improving toughened plastics and other smart heterophase network materials for different applications. The new method for MMD characterization of polymers in bulk will be very useful to quickly analyze a polymer's MMD and to design new polymers. This book will provide a useful reference for graduates, researchers and working professionals in polymer chemistry and physics and materials science.




Heterophase Network Polymers


Book Description

This volume explains the theory and experimental investigations in the preparation of heterophase polymer network materials through cure reaction-induced microphase separation (CRIMPS). It describes the synthesis of a new family of block- and graft-copolymers with controlled solubility in epoxies and characterizes CRIMPS processes using novel applications of known methods such as nuclear magnetic resonance, electron spin resonance and photochemistry. The text develops a new method for characterizing the molecular mass distribution (MMD) of linear and network polymers using thermomechanical analysis data, as well as new methods for determining internal stresses and flaw formation during thermoset curing. The CRIMPS theory will be helpful for researchers and engineers designing and improving toughened plastics and other smart heterophase network materials for different applications. The new method for MMD characterization of polymers in bulk will be very useful to quickly analyze a polymer's MMD and to design new polymers. This book will provide a useful reference for graduates, researchers and working professionals in polymer chemistry and physics and materials science.







Fundamentals of Polymerization


Book Description

Over the last twenty years, the field of the chemistry of polymerization witnessed enormous growth through the development of new concepts, catalysts, processes etc. Examples are: non classical living polymerizations (group transfer polymerization, living carbocationic polymerization, living radical polymerization and living ring-opening metathesis polymerization (ROMP)); new catalysts (metallocenes and late transition metal catalysts for stereospecific polymerization, Schrock and Grubbs catalyst for ROMP among others) and new processes such as miniemulsion, microemulsion polymerization and dispersion polymerization (in polar solvents). Apart from the developments in the chemistry of polymerization, methods have been developed for the evaluation of highly reliable rate constants of propagation in radical as well as cationic polymerization. All these have revolutionized the field of synthetic polymer chemistry. In the book, fundamentals of both the new and old polymerization chemistry have been dealt with. The new chemistry has been given nearly equal space along with the old.




Polymer Reaction Engineering of Dispersed Systems


Book Description

The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science.The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics.Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students




Advanced Polymer Nanoparticles


Book Description

Polymer latex particles continue to become increasingly important in numerous commercial applications. Advanced synthesis techniques are the key to developing new functionality for nanoparticles. These methods make it possible to tailor the size, chemical composition, or properties of these particles, as well as the molecular weight of the polymer




Encyclopedia of Polymer Science and Technology, Concise


Book Description

The compact, affordable reference, revised and updated The Encyclopedia of Polymer Science and Technology, Concise Third Edition provides the key information from the complete, twelve-volume Mark's Encyclopedia in an affordable, condensed format. Completely revised and updated, this user-friendly desk reference offers quick access to all areas of polymer science, including important advances in nanotechnology, imaging and analytical techniques, controlled polymer architecture, biomimetics, and more, all in one volume. Like the twelve-volume full edition, the Encyclopedia of Polymer Science and Technology, Concise Third Edition provides both SI and common units, carefully selected key references for each article, and hundreds of tables, charts, figures, and graphs.




Colloids and Colloid Assemblies


Book Description

Written by outstanding experts in the colloids field, this book deals with the recent developments in the synthesis, modification, utilization and application of colloids. The types covered range from metal nanoparticles through to inorganic particles and polymer latexes. Strategies for their modification to impart new properties will be outlined and ordered assemblies derived from colloid particles and some applications for colloids are shown. A multidisciplinary audience spread throughout academia and industry alike will certainly appreciate this first concise collection of knowledge in book form for this topic.