Heterosis and Hybrid Seed Production in Agronomic Crops


Book Description

Heterosis and Hybrid Seed Production in Agronomic Crops discusses how heterosis or “hybrid vigor” has played a major role in improving crop productivity and quality in order to feed the ever-increasing human population, particularly in developing countries. Plant breeders, agronomists, seed producers, and farmers will discover why the development of hybrids in the world's major food crops and why the methods of hybrid seed production are critical for achieving this goal. This landmark book deals with heterosis and hybrid seed production of major agronomic crops such as wheat, rice, maize, sorghum, cotton, sunflower, and rapeseed. Through Heterosis and Hybrid Seed Production in Agronomic Crops, you will discover valuable information on hybrid seed production methods that is not available in any other single volume. This unique book contains relevant and essential information about important procedures to help increase crop yield, including: methods for deriving second cycle inbred lines for hybrid maize possibilities for hybrid seed production in wheat techniques of hybrid sorghum seed production production of hybrid seeds using male sterile lines of cotton agronomic management in seed production plots of sunflower seed production technology of hybrid rapeseed advances in hybrid seed production technology of rice in China Heterosis and Hybrid Seed Production in Agronomic Crops gives you a global perspective on essential food crops in all parts of the world. This informative guide will help you use hybrid seed production methods with important agricultural crops and increase the quality of these vital and essential food sources.




Heterosis and Hybrid Seed Production in Agronomic Crops


Book Description

Heterosis and Hybrid Seed Production in Agronomic Crops discusses how heterosis or “hybrid vigor” has played a major role in improving crop productivity and quality in order to feed the ever-increasing human population, particularly in developing countries. Plant breeders, agronomists, seed producers, and farmers will discover why the development of hybrids in the world's major food crops and why the methods of hybrid seed production are critical for achieving this goal. This landmark book deals with heterosis and hybrid seed production of major agronomic crops such as wheat, rice, maize, sorghum, cotton, sunflower, and rapeseed. Through Heterosis and Hybrid Seed Production in Agronomic Crops, you will discover valuable information on hybrid seed production methods that is not available in any other single volume. This unique book contains relevant and essential information about important procedures to help increase crop yield, including: methods for deriving second cycle inbred lines for hybrid maize possibilities for hybrid seed production in wheat techniques of hybrid sorghum seed production production of hybrid seeds using male sterile lines of cotton agronomic management in seed production plots of sunflower seed production technology of hybrid rapeseed advances in hybrid seed production technology of rice in China Heterosis and Hybrid Seed Production in Agronomic Crops gives you a global perspective on essential food crops in all parts of the world. This informative guide will help you use hybrid seed production methods with important agricultural crops and increase the quality of these vital and essential food sources.




Genetics and Exploitation of Heterosis in Crops


Book Description

Explore the momentous contributions of hybrid crop varieties with worldwide experts. Topics include an overview, quantitative genetics, genetic diversity, biochemistry and molecular biology, methodologies, commercial strategies, and examples from numerous crops.




Hybrid Rice Breeding Manual


Book Description

Heterosis breeding and hybrid rice; Male sterility systems in rice; Organization of hybrid rice breeding program using CMS system; Source nursery; CMS maintenance and evaluation nursery; Testcross nursery; Restorer purification nursery; Backcross nursery; Combining ability nursery; Breeding rice hybrids with TGMS system; Nucleus and breeder seed production of A, B, R, and TGMS lines; Seed production of experimental rice hybrids; Evaluation of experimental rice hybrids; Improvement of parental lines; Methods of enhancing the levels of heterosis; Quality assurance procedures in hybrid rice breeding.




Heterosis


Book Description

When trying to solicit authors for this book it became apparent that the causal factors for heterosis at the physiological and biochemical level are today almost as obscure as they were 30 years ago. Though biometrical-genetical analyses point to dispersion of complementary genes - not overdominance - as the major cause of the phenomenon, plant breeders' experience still suggests a cautious, pragmatic approach to the dominance-overdominance controversy in breeding hybrid cultivars. Thus we are faced with a striking discordance between our limited comprehension of the causal factors and mechanism of heter osis on the one hand, and the extensive agricultural practice of utiliza tion of hybrid vigor on the other. Such utilization is the result of the economic value of hybrid combinations displaying superior yields and qualities as well as stability of performance, of benefits derived in breeding programs, and of the enhanced varietal protection of proprietary rights. No comprehensive and critical analysis of the phenomenon of heterosis in economic plants has been published for the last three decades since the now classical book Heterosis, edited by J . W. Gowen (Iowa State College Press, Ames, Iowa, 1952). The present book attempts to fill the gap and to assess the status of our present knowl edge of the concept, the basis, the extent, and the application of heterosis in economic plants.




Breeding Field Crops


Book Description

While preparing the first edition of this textbook I attended an extension short course on writing agricultural publications. The message I remember was "select your audience and write to it. " There has never been any doubt about the audience for which this textbook was written, the introductory course in crop breeding. In addition, it has become a widely used reference for the graduate plant-breeding student and the practicing plant breeder. In its prepa ration, particular attention has been given to advances in plant-breeding theo ry and their utility in plant-breeding practice. The blend of the theoretical with the practical has set this book apart from other plant-breeding textbooks. The basic structure and the objectives of the earlier editions remain un changed. These objectives are (1) to review essential features of plant re production, Mendelian genetic principles, and related genetic developments applicable in plant-breeding practice; (2) to describe and evaluate established and new plant-breeding procedures and techniques, and (3) to discuss plant breeding objectives with emphasis on the importance of proper choice of objec tive for achieving success in variety development. Because plant-breeding activities are normally organized around specific crops, there are chapters describing breeding procedures and objectives for the major crop plants; the crops were chosen for their economic importance or diversity in breeding sys tems. These chapters provide a broad overview of the kinds of problems with which the breeder must cope.







Principles of Plant Genetics and Breeding


Book Description

The revised edition of the bestselling textbook, covering both classical and molecular plant breeding Principles of Plant Genetics and Breeding integrates theory and practice to provide an insightful examination of the fundamental principles and advanced techniques of modern plant breeding. Combining both classical and molecular tools, this comprehensive textbook describes the multidisciplinary strategies used to produce new varieties of crops and plants, particularly in response to the increasing demands to of growing populations. Illustrated chapters cover a wide range of topics, including plant reproductive systems, germplasm for breeding, molecular breeding, the common objectives of plant breeders, marketing and societal issues, and more. Now in its third edition, this essential textbook contains extensively revised content that reflects recent advances and current practices. Substantial updates have been made to its molecular genetics and breeding sections, including discussions of new breeding techniques such as zinc finger nuclease, oligonucleotide directed mutagenesis, RNA-dependent DNA methylation, reverse breeding, genome editing, and others. A new table enables efficient comparison of an expanded list of molecular markers, including Allozyme, RFLPs, RAPD, SSR, ISSR, DAMD, AFLP, SNPs and ESTs. Also, new and updated “Industry Highlights” sections provide examples of the practical application of plant breeding methods to real-world problems. This new edition: Organizes topics to reflect the stages of an actual breeding project Incorporates the most recent technologies in the field, such as CRSPR genome edition and grafting on GM stock Includes numerous illustrations and end-of-chapter self-assessment questions, key references, suggested readings, and links to relevant websites Features a companion website containing additional artwork and instructor resources Principles of Plant Genetics and Breeding offers researchers and professionals an invaluable resource and remains the ideal textbook for advanced undergraduates and graduates in plant science, particularly those studying plant breeding, biotechnology, and genetics.




Plant Breeding


Book Description

The Indian Society of Genetics and Plant Breeding was established in 1941 in recognition of the growing contribution of improved crop varieties to the country's agriculture. Scientific plant breeding had started inIndia soon after the rediscovery of Mendel's laws of heredity. The Indian Agricultural Research Institute set up in 1905 and a number of Agricultural Colleges in different parts of the country carried out some of the earliest work mostly inthe form of pure-line selections. In subsequent years, hybridization programmes in crops like wheat, rice, oilseeds, grain legumes, sugarcane and cotton yielded a large number of improved cultivars with significantly higher yields. A turning point came in the 1960s with the development of hybrids in several crops including inter-specific hybrids in cotton. And when new germplasm with dwarfing genes became available in wheat and rice from CIMMYT and IRRI, respectively,Indian plant breeders quickly incorporated these genes into the genetic background of the country's widely grown varieties with excellent grain quality and other desirable traits. This was to mark the beginning of modem agriculture in India as more and more varieties were developed, characterized by a high harvest index and response to modem farm inputs like the inorganic fertilizers . India's green revolution which has led to major surpluses offood grains and othercommodities like sugar and cotton has been made possible by the work of one of the largest groups of plant breeders working in a coordinated network.




Hybrid Rice Technology


Book Description

This symposium is a follow-up to one held in China in 1986. Since then considerable progress has been made in research and development of hybrid rice. This second international symposium was held under the umbrella of the International Rice Research Conference. Eighty scientists and seed production experts from 18 countries, IRRI and FAO attended. Contributions covered breeding, biotechnology, seed production, agronomy, plant physiology, plant pathology, entomology and economics.