Hierarchical Composite Materials


Book Description

Hierarchical Composite Materials provides an in-depth analysis of a class of advanced composites that have properties that are anisotropic due to structural organization at different length scales. Chapters address how ordering occurs from the atomic-scale up to the microstructure and how control of these factors leads to the final materials' properties. Manufacturing procedures, properties, and applications of different functionally graded materials are discussed in detail. This book is ideal for materials scientists, mechanical engineers, chemists and physicists.







Hybrid and Hierarchical Composite Materials


Book Description

This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous and detailed examples and over 150 illustrations. In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.




Nanoindentation of Natural Materials


Book Description

Nanoindentation of Natural Materials: Hierarchical and Functionally Graded Microstructures provides a systematic introduction and review of state-of-the-art statistical hierarchical and functionally graded structures found in bone, teeth, hair, and scales, from a nanoindentation perspective, including detailed microstructure and composition. It covers the basics of hierarchical and functionally graded structures and nanoindentation techniques and detailed discussion with correlation micro/nano mechanical-structures The book includes practical issues backed with experimental data




Hierarchical Structures in Biology as a Guide for New Materials Technology


Book Description

Hierarchical structures are those assemblages of molecular units or their aggregates embedded within other particles or aggregates that may, in turn, be part of even larger units of increasing levels of organization. This volume reviews the state of the art of synthetic techniques and processing procedures for assembling these structures. Typical natural-occurring systems used as models for synthetic efforts and insight on properties, unusual characteristics, and potential end-use applications are identified. Suggestions are made for research and development efforts to mimic such structures for broader applications.







Manufacturing and Fracture of Hierarchical Composite Materials Enhanced with Aligned Carbon Nanotubes


Book Description

Hierarchical advanced composite structures comprised of both nano- and micro-scale fibers are currently being studied as next-generation materials for multifunctional aerospace applications. Carbon nanotubes (CNTs) are an attractive reinforcing fiber for aerospace composites due to their scale and superior specific stiffness and strength, as well as their potential to enhance multifunctional properties. Nano-scale fibers can address current challenges in composites such as relatively weak through-thickness properties that occur due to matrix-rich regions, including those found at interlaminar ply interfaces, that are prone to delamination and lead to overall reductions in mechanical properties. Existing technologies such as stitching, z-pinning, and braiding provide through-thickness reinforcement; however, these improvements come with simultaneous reductions in in-plane properties. CNTs provide an alternative fiber reinforcement, though currently the literature reveals that laminate mechanical property enhancements are lower than expected. Investigations into how CNTs affect laminate properties have stalled due to difficulties with producing quality laminates and controlling CNT orientation and dispersion. In this work, manufacturing routes of a nano-engineered composite are developed to provide consistent control over laminate quality while placing aligned CNTs (A-CNTs) in the polymer matrix in the interlaminar and intralaminar regions. Manufacturing techniques are developed for growing aligned CNTs on a three-dimensional woven microfiber substrate and infiltrating the fuzzy fiber plies with polymer to realize the Fuzzy Fiber Reinforced Plastics (FFRP) architecture. These FFRP laminates show




The Structural Integrity of Carbon Fiber Composites


Book Description

This book brings together a diverse compilation of inter-disciplinary chapters on fundamental aspects of carbon fiber composite materials and multi-functional composite structures: including synthesis, characterization, and evaluation from the nano-structure to structure meters in length. The content and focus of contributions under the umbrella of structural integrity of composite materials embraces topics at the forefront of composite materials science and technology, the disciplines of mechanics, and development of a new predictive design methodology of the safe operation of engineering structures from cradle to grave. Multi-authored papers on multi-scale modelling of problems in material design and predicting the safe performance of engineering structure illustrate the inter-disciplinary nature of the subject. The book examines topics such as Stochastic micro-mechanics theory and application for advanced composite systems Construction of the evaluation process for structural integrity of material and structure Nano- and meso-mechanics modelling of structure evolution during the accumulation of damage Statistical meso-mechanics of composite materials Hierarchical analysis including "age-aware," high-fidelity simulation and virtual mechanical testing of composite structures right up to the point of failure. The volume is ideal for scientists, engineers, and students interested in carbon fiber composite materials, and other composite material systems.




Composite Materials: Applications in Engineering, Biomedicine and Food Science


Book Description

Composite materials are formed when the combination of separate materials acquire new properties distinct from its components. They have a range of applications in fields such as mechanical and electrical engineering, food science and biomedicine and represent a fast-growing area of research. Composite Materials: Applications in Engineering, Biomedicine and Food Science provides an overview of current technologies and applications related to composite materials in these fields. Organized by discipline, the text encompasses a wide variety of composite materials, including polymer, ceramic, biomaterial, hydroxyapatite, nanofiber and green composites. Early chapters detail the enhanced mechanical, magnetic, dielectric properties of electrical and thermal conductive composite materials, which are essential in daily science. Subsequent chapters focus on filler or reinforcement materials, including carbon materials, hybrid materials and nanomaterials. Particular emphasis is placed on nanocomposite materials, as these have increasingly diverse field applications. Various manufacturing methods, such as the synthesis method and top-down/bottom-up manufacturing, are also discussed. Coverage of the recent progress, challenges and opportunities surrounding composite materials make this text a one-stop reference for engineers, scientists and researchers working in this exciting field.




Advances in Lightweight Materials and Structures


Book Description

This book presents select proceedings of the International Conference on Advanced Lightweight Materials and Structures (ICALMS) 2020, and discusses the triad of processing, structure, and various properties of lightweight materials. It provides a well-balanced insight into materials science and mechanics of both synthetic and natural composites. The book includes topics such as nano composites for lightweight structures, impact and failure of structures, biomechanics and biomedical engineering, nanotechnology and micro-engineering, tool design and manufacture for producing lightweight components, joining techniques for lightweight structures for similar and dissimilar materials, design for manufacturing, reliability and safety, robotics, automation and control, fatigue and fracture mechanics, and friction stir welding in lightweight sandwich structures. The book also discusses latest research in composite materials and their applications in the field of aerospace, construction, wind energy, automotive, electronics and so on. Given the range of topics covered, this book can be a useful resource for beginners, researchers and professionals interested in the wide ranging applications of lightweight structures.