Hierarchically Porous Bio-Carbon Based Composites for High Electromagnetic Shielding Performance


Book Description

This book highlights the preparation and characterization of efficient electromagnetic shielding composites containing bio-carbon derived from natural loofah with unique three-dimensional porous structures by means of entire structure design of composites according to shielding theory. The synergistic effect of multifunctional nanoparticles and bio-carbon on electromagnetic shielding mechanism, mechanical performance, and thermal stability of composites obtained has been holistically investigated. The discovery of this renewable, environmentally friendly, and inexpensive bio-carbon represents a new class of conductive materials with multi-interfaces and unravels further research and development of a wide variety of new electromagnetic shielding material systems with potential commercial applications ranging from electronic devices to energy management.​




Porous Nanocomposites for Electromagnetic Interference Shielding


Book Description

Porous Nanocomposites for Electromagnetic Interference Shielding thoroughly discusses the fabrication, processing and design parameters of advanced materials for electromagnetic pollution suppression for high-frequency electronics. The book provides readers with an understanding of the important concepts and relevant advances in the engineering of porous nanocomposites for enhanced microwave absorption and EMI shielding. Porous materials reviewed include foams and aerogels which offer a robust and lightweight solution to design and fabricate microwave absorbers that can be a potential solution to stifle electromagnetic (EM) pollution. The aim of this book is to review the recent advances in the area of porous nanocomposites that have the ability to absorb EM radiation and thereby suppress EM pollution. It will be ideal for materials scientists and engineers working in academia, research and development in industry. Reviews the latest advances in the fabrication, processing, and design of porous nanocomposites for enhanced microwave absorption and EMI shielding applications Provides key information on the most relevant porous nanocomposites for EMI shielding, including aerogels and foams derived from polymers, ceramics, carbon, and other advanced materials Discusses life cycle analysis and recycling considerations of porous nanocomposites




Morphology Design Paradigms for Supercapacitors


Book Description

Nanostructured electrode materials have exhibited unrivaled electrochemical properties in creating elite supercapacitors. Morphology Design Paradigm for Supercapacitors presents the latest advances in the improvement of supercapacitors, a result of the incorporation of nanomaterials into the design – from zero-dimensional to three-dimensional, and microporous to mesoporous. The book includes a comprehensive description of capacitive practices at the levels of sub-atomic and nanoscales. These have the ability to enhance device performance for an extensive assortment of potential applications, including consumer electronics, wearable gadgets, hybrid electric vehicles, stationary and industrial frameworks. Key Features: Provides readers with a clear understanding of the implementation of these materials as electrodes in electrochemical supercapacitors. Covers recent material designs and an extensive scope of electrode materials such as 0D to 3D. Explores recent nanostructured-system material designs that have been created and tested in supercapacitor configurations. Considers microporous to mesoporous supercapacitor electrode materials. Features the impact of nanostructures on the properties of supercapacitors, including specific capacitance, cycle stability, and rate capability.




Electromagnetic Wave Absorption and Shielding Materials


Book Description

This book reveals the latest research findings and innovations in electromagnetic wave absorption and shielding by exploring the design and application of absorbent materials, the optimization of shielding structures and the improvement of testing and evaluation methods. From conductive materials to magnetic materials, and composite materials to nanomaterials, Electromagnetic Wave Absorption and Shielding Materials details the characteristics and advantages of various absorbent materials and explains their applications in electromagnetic wave absorption and shielding. It then introduces the different methods of electromagnetic shielding, including structural shielding and material shielding. The book also studies experimental and testing techniques, including measurement methods and evaluation criteria for electromagnetic wave absorption performance. The book will be of interest to researchers and graduate students in electromagnetic compatibility, materials science and engineering.




Electromagnetic Wave Absorbing Materials


Book Description

Electromagnetic Wave Absorbing Materials Electromagnetic Wave Absorbing Materials presents information on the most promising electromagnetic wave absorbing materials, with timely coverage of both conventional and novel materials including 1D, 2D, and 3D materials. This book enables readers to address the growing specification needs in the field through optimizing electromagnetic parameters and promoting interface polarization, two key properties for wireless technology in electronic applications. Edited by three highly qualified academics with significant relevant research experience, Electromagnetic Wave Absorbing Materials includes discussions on: Materials including ferrites, graphene, carbon‐based composite absorbers, SiC ceramics, MOFs, and meta‐material based absorbers Recent advances in the field surrounding composite absorbers, conductive polymers, and ceramics, and other materials Potential improvements in the Internet of Things, 5G mobile applications, and intelligent transport systems through electromagnetic wave absorbing materials Potential improvements in the Internet of Things, 5G mobile applications, and intelligent transport systems through electromagnetic wave absorbing materials Applications including terrestrial and satellite communication (software radio, GPS, and satellite TV), environmental monitoring via satellite, and EMI shielding, as well as stealth applications Electromagnetic Wave Absorbing Materials is an essential reference on the subject for researchers and advanced students in the chemical, electronics, and communications industries, as well as R&D scientists at companies such as Apple, HUAWEI, and China Aerospace Science and Technology Corp (CASC).




Polysaccharides


Book Description

Key Features: Details the source, production, structures, properties, and current and potential applications of polysaccharides. Discusses general strategies of isolation, separation and characterization of polysaccharides. Describes botanical, algal, animal, and microbial sources of polysaccharides. Demonstrates the importance of carbohydrates in new lead generation. Highlights the range of possibilities for polysaccharides to make real-world impact.




MXene Nanocomposites


Book Description

MXenes offer single step processing, excellent electrical conductivity, easy heat dissipation behavior, and capacitor-like properties and are used in photodetectors, lithium-ion batteries, solar cells, photocatalysis, electrochemiluminescence sensors, and supercapacitors. Because of their superior electrical and thermal conductivities, these composites are an ideal choice in electromagnetic interference (EMI) shielding. MXene Nanocomposites: Design, Fabrication, and Shielding Applications presents a comprehensive overview of these emerging materials, including their underlying chemistry, fabrication strategies, and cutting-edge applications in EMI shielding. • Covers modern fabrication technologies, processing, properties, nanostructure formation, and mechanisms of reinforcement. • Discuss biocompatibility, suitability, and toxic effects. • Details innovations, applications, opportunities, and future directions in EMI shielding applications. This book is aimed at researchers and advanced students in materials science and engineering and is unique in its detailed coverage of MXene-based polymer composites for EMI shielding.




Encyclopedia of Polymer and Rubber Additives


Book Description

Encyclopedia of Polymer and Rubber Additives documents how polymer properties and performance can be improved through the use of additives, resulting in enhanced physical properties, stability, improved process and assembly, extended shelf life, enhanced purity, and minimized environmental impact. 88 groups of additives used by all segments of the polymer and rubber industries are included, with each group discussed in a systematic manner in order to facilitate easy information retrieval and comparison. Typical chemical structures, mechanisms of action, influences and interferences in complex formulations, and evidence of performance from experimental studies are each featured, with frequent references to monographic sources for even more in-depth knowledge of the subject. The companion volume, Databook of the Most Important Polymer and Rubber Additives is also available. It contains robust technical data on the most essential additives currently in use, and the two books are must-have references for anyone working with rubbers and plastics. Provides a complete set of tables, classifications, and information related to a wide variety of commercially used additives for polymers and rubbers Details the characteristics of hundreds of additives that can improve performance of physical properties, stability, and storage life, provide colorants, reduce costs, enhance purity, and minimize environmental impact Facilitates information retrieval and comparison, discussing mechanisms of action, suitable features, modifications, evidence of performance from experimental studies, and more




Hybrid Natural Fiber Composites


Book Description

Research on natural fiber composites is an emerging area in the field of polymer science with tremendous growth potential for commercialization. Hybrid Natural Fiber Composites: Material Formulations, Processing, Characterization, Properties, and Engineering Applications provides updated information on all the important classes of natural fibers and their composites that can be used for a broad range of engineering applications. Leading researchers from industry, academia, government, and private research institutions from across the globe have contributed to this highly application-oriented book. The chapters showcase cutting-edge research discussing the current status, key trends, future directions, and opportunities. Focusing on the current state of the art, the authors aim to demonstrate the future potential of these materials in a broad range of demanding engineering applications. This book will act as a one-stop reference resource for academic and industrial researchers working in R&D departments involved in designing composite materials for semi structural engineering applications. Presents comprehensive information on the properties of hybrid natural fiber composites that demonstrate their ability to improve the hydrophobic nature of natural fiber composites Reviews recent developments in the research and development of hybrid natural fiber composites in various engineering applications Focuses on modern technologies and illustrates how hybrid natural fiber composites can be used as alternatives in structural components subjected to severe conditions




Processing of Polymer-based Nanocomposites


Book Description

Processing of polymer nanocomposites usually requires special attention since the resultant structure—micro- and nano-level, is directly influenced by among other factors, polymer/nano-additive chemistry and the processing strategy. This book consolidates knowledge, from fundamental to product development, on polymer nanocomposites processing with special emphasis on the processing-structure-property-performance relationships in a wide range of polymer nanocomposites. Furthermore, this book focuses on emerging processing technologies such as electrospinning, which has very exciting applications ranging from medical to filtration. Additionally, the important role played by the nanoparticles in polymer blends structures has been illustrated in the current book, with special focus on fundamental aspects and properties of nanoparticles migration and interface crossing in immiscible polymer blend nanocomposites. This book introduces readers to nanomaterials and polymer nanocomposites processing. After defining nanoparticles and polymer nanocomposites and discussing environmental aspects, the second chapter focuses on the synthesis and functionalization of nanomaterials with applications in polymers. A brief overview on nanoclay and nanoclay-containing polymer nanocomposites is provided in third chapter. The fourth chapter provides an overview of the polymer nanocomposites structural elucidation techniques, such as X-ray diffraction and scattering, microscopy and spectroscopy, rheology. The fifth chapter is dedicated to the polymer nanocomposites processing technologies, among which electrospinning, which has very exciting applications ranging from medical to filtration. The last chapter provides an overview on how melt-processing strategy impact structure and mechanical properties of polymer nanocomposites by taking polypropylene-clay nanocomposite as a model system. The book is useful to undergraduate and postgraduate students (polymer engineering, materials science & engineering, chemical & process engineering), as well as research & development personnel, engineers, and material scientists.