High Angular Resolution Studies of the Structure and Evolution of Protoplanetary Disks


Book Description

Young stars are surrounded by massive, rotating disks of dust and gas, which supply a reservoir of material that may be incorporated into planets or accreted onto the central star. In this dissertation, I use high angular resolution observations at a range of wavelengths to understand the structure, ubiquity, and evolutionary timescales of protoplanetary disks. First, I describe a study of Class I protostars, objects believed to be at an evolutionary stage between collapsing spherical clouds and fully-assembled young stars surrounded by protoplanetary disks. I use a Monte Carlo radiative transfer code to model new 0.9 micron scattered light images, 1.3 mm continuum images, and broadband spectral energy distributions. This modeling shows that Class I sources are probably surrounded by massive protoplanetary disks embedded in massive infalling envelopes. For the best-fitting models of the circumstellar dust distributions, I determine several important properties, including envelope and disk masses, mass infall rates, and system inclinations, and I use these results to constrain the evolutionary stage of these objects. Second, I discuss observations of the innermost regions of more evolved disks around T Tauri and Herbig Ae/Be stars, obtained with the Palomar Testbed and Keck Interferometers. I constrain the spatial and temperature structure of the circumstellar material at sub-AU radii, and demonstrate that lower-mass stars are surrounded by inclined disks with puffed-up inner edges 0.1-1 AU from the star. In contrast, the truncated inner disks around more massive stars may not puff-up, indicating that disk structure depends on stellar properties. I discuss the implications of these results for disk accretion, terrestrial planet formation and giant planet migration. Finally, I put these detailed studies of disk structure into a broader context by constraining the mass distribution and evolutionary timescales of circumstellar disks. Using the Owens Valley Millimeter Array, I mapped the millimeter continuum emission toward >300 low-mass stars in the NGC 2024 and Orion Nebula clusters. These observations demonstrate that the average disk mass in each cluster is comparable to the "minimum-mass protosolar nebula," and that there may be disk evolution on one million year timescales.







The Formation and Early Evolution of Stars


Book Description

Starburst regions in nearby and distant galaxies have a profound impact on our understanding of the early universe. This new, substantially updated and extended edition of Norbert Schulz’s unique book "From Dust to Stars" describes complex physical processes involved in the creation and early evolution of stars. It illustrates how these processes reveal themselves from radio wavelengths to high energy X-rays and gamma–rays, with special reference towards high energy signatures. Several sections devoted to key analysis techniques demonstrate how modern research in this field is pursued and new chapters are introduced on massive star formation, proto-planetary disks and observations of young exoplanets. Recent advances and contemporary research on the theory of star formation are explained, as are new observations, specifically from the three great observatories of the Spitzer Space Telescope, the Hubble Space Telescope and the Chandra X-Ray Observatory which all now operate at the same time and make high resolution space based observing in its prime. As indicated by the new title two new chapters have been included on proto-planetary disks and young exoplanets. Many more colour images illustrate attractive old and new topics that have evolved in recent years. The author gives updates in theory, fragmentation, dust, and circumstellar disks and emphasizes and strengthens the targeting of graduate students and young researchers, focusing more on computational approaches in this edition.




From Protoplanetary Disks to Planet Formation


Book Description

Is the Sun and its planetary system special? How did the Solar system form? Are there similar systems in the Galaxy? How common are habitable planets? What processes take place in the early life of stars and in their surrounding circumstellar disks that could impact whether life emerges or not? This book is based on the lectures by Philip Armitage and Wilhelm Kley presented at 45th Saas-Fee Advanced Course „From Protoplanetary Disks to Planet Formation“ of the Swiss Society for Astrophysics and Astronomy. The first part deals with the physical processes occurring in proto-planetary disks starting with the observational context, structure and evolution of the proto-planetary disk, turbulence and accretion, particle evolution and structure formation. The second part covers planet formation and disk-planet interactions. This includes in detail dust and planetesimal formation, growth to protoplanets, terrestrial planet formation, giant planet formation, migration of planets, multi-planet systems and circumbinary planets. As Saas-Fee advanced course this book offers PhD students an in-depth treatment of the topic enabling them to enter on a research project in the field.




Protostars and Planets V


Book Description

'Protostars and Planets V' builds on the latest results from recent advances in ground and space-based astronomy and in numerical computing techniques to offer the most detailed and up-to-date picture of star and planet formation - including the formation and early evolution of our own solar system.




Protostars and Planets IV


Book Description

Click here for the online version of this book! This title, out of print in 2008, is now available free of charge, in it's entirety, online through the University of Arizona Press! Both a textbook and a status report for every facet of research into the formation of stars and planets, Protostars and Planets IV brings together 167 authors who report on the most significant advances in the field since the publication of the previous volume in 1993. Protostars and Planets IV reflects improvements in observational techniques and the availability of new facilities such as the Infrared Space Observatory, the refurbished Hubble Space Telescope, and the 10-m Keck telescopes. Advances in computer technology and modeling methods have benefited theoretical studies of molecular clouds, star formation, and jets and disks, while recent analyses of meteorites yield important insights into conditions and processes within our Sun's early protoplanetary disk. The 49 chapters describe context and progress for observational and theoretical studies of the structure, chemistry, and dynamics of molecular clouds; the collapse of cores and the formation of protostars; the formation and properties of young binary stars; the properties of winds, jets, and molecular outflows from young stellar objects; the evolution of circumstellar envelopes and disks; grain growth in disks and the formation of planets; and the properties of the early Solar nebula. Protostars and Planets IV is also the first book to include chapters describing the discoveries of extrasolar planets, brown dwarfs, and Edgeworth-Kuiper Belt objects, and the first to include high-resolution optical and near-infrared images of protoplanetary disks. Protostars and Planets IV is an unsurpassed reference not only for established researchers but also for younger scientists whose imagination and work will lead to tomorrow's discoveries.




Structure and Evolution of Circumstellar Disks, a Spitzer View


Book Description

This dissertation is the sum of five studies of the structure and evolution of circumstellar disks, the birthplace of planets. These studies are all based on Infrared data from the Spitzer Space Telescope, and taken together trace the evolution of disks from the optically thick primordial stage to the optically thin debris disk stage. The five projects included in this dissertation are diverse but they are all interconnected and have a common underlying motivation: to impose observational constraints on different aspects of planet formation theories. In the first project, we study the near and mid-IR (1.2-24 [mu]m) emission of Classical T Tauri Star (CTTS), which are low-mass pre-main sequence (PMS) stars that show clear evidence for accretion. We discuss the implications of our results on the structure of their inner disks and their estimated ages. In the second project, we study the incidence as a function of age of disks around weak-line T Tauri stars (low-mass PMS stars that are mostly coeval with CTTS but that do not show clear evidence for accretion) and explore the structure of these disks. We estimate the dissipation timescale of the planet-forming region of primordial disks and discuss the implications for planet formation theories. The third and fourth projects deal with the evolution of angular momentum of PMS stars. We search for observational evidence for the connection between stellar rotation and the presence of a disk predicted by the current disk-braking paradigm, according to which the rotational evolution of PMS stars is regulated through magnetic interactions between the stellar magnetosphere and the inner disk. The last project deals with debris disks, which are second-generation disks where the dust is continuously replenished by collisions between planetesimals. We search for debris disks in the far-IR (24-160 [mu]m) around a sample of Hyades Cluster members. We discuss the implications of our results on the evolution of debris disks and on the Late Heavy Bombardment in the Solar System.







Evolution of Protoplanetary Disks in the Orion A Star-forming Region


Book Description

"In this dissertation we investigate the characteristics of Class II protoplanetary disks in Orion A star-forming region. Our major goal is to analyze a large sample of protoplanetary disks with near- and mid-IR spectra, by statistical approaches, to understand protoplanetary disk evolution in Orion A. The topics with which we deal include the following: (1) Environmental and age effects on the evolution of protoplanetary disks; (2) Giant planet formation in the transitional disks of Orion A: a statistical study of correlations among disk and stellar properties; (3) The impact of extreme UV radiation on the protoplanetary disks near the Trapezium. For this work, 303 protoplanetary disks in Orion A region observed by IRS/Spitzer and the follow-up observation of 120 objects from SpeX/IRTF are used to reveal the characteristics of Class II disks in Orion A. For clues on environmental effects on disk evolution and planet formation, we compare the disk properties and dust properties of Orion A disks to that of Taurus disks and examine trends with respect to position within Orion A. We extract spectral indices, equivalent widths, and integrated fluxes from IRS spectra of Class II objects in Orion A which pertain to disk structure and dust composition. We measure mass accretion rates using hydrogen recombination lines in SpeX spectra of our targets. Utilizing the properties, we analyze the general distribution of properties of disks in ONC, L1641, and Taurus from their histograms. Our main findings are as follows: Transitional disks - those protoplanetary disks for which deficits of infrared excess signify sharp-edged gaps in the dust distribution - are produced gravitationally by companions to the central star. The vast majority of the companions (




Protostars and Planets VI


Book Description

Proceedings of a conference held in Heidelberg, Germany, July 15-20, 2013.