High Efficiency Power Supply Using New SiC Devices
Author : Ashot Melkonyan
Publisher : kassel university press GmbH
Page : 159 pages
File Size : 20,86 MB
Release : 2007
Category :
ISBN : 3899583027
Author : Ashot Melkonyan
Publisher : kassel university press GmbH
Page : 159 pages
File Size : 20,86 MB
Release : 2007
Category :
ISBN : 3899583027
Author : IEEE Staff
Publisher :
Page : pages
File Size : 37,54 MB
Release : 2020-11-06
Category :
ISBN : 9781728175942
This conference will feature plenary speeches, tutorials, and technical sessions on HVDC technologies, including LCC HVDC, VSC HVDC, HVDC power grids, and DC power systems
Author : Dr. Marian K. Kazimierczuk
Publisher : John Wiley & Sons
Page : 510 pages
File Size : 18,31 MB
Release : 2009-11-02
Category : Technology & Engineering
ISBN : 0470714530
If you are looking for a complete study of the fundamental concepts in magnetic theory, read this book. No other textbook covers magnetic components of inductors and transformers for high-frequency applications in detail. This unique text examines design techniques of the major types of inductors and transformers used for a wide variety of high-frequency applications including switching-mode power supplies (SMPS) and resonant circuits. It describes skin effect and proximity effect in detail to provide you with a sound understanding of high-frequency phenomena. As well as this, you will discover thorough coverage on: integrated inductors and the self-capacitance of inductors and transformers, with expressions for self-capacitances in magnetic components; criteria for selecting the core material, as well as core shape and size, and an evaluation of soft ferromagnetic materials used for magnetic cores; winding resistance at high frequencies; expressions for winding and core power losses when non-sinusoidal inductor or transformer current waveforms contain harmonics. Case studies, practical design examples and procedures (using the area product method and the geometry coefficient method) are expertly combined with concept-orientated explanations and student-friendly analysis. Supplied at the end of each chapter are summaries of the key concepts, review questions, and problems, the answers to which are available in a separate solutions manual. Such features make this a fantastic textbook for graduates, senior level undergraduates and professors in the area of power electronics in addition to electrical and computer engineering. This is also an inimitable reference guide for design engineers of power electronics circuits, high-frequency transformers and inductors in areas such as (SMPS) and RF power amplifiers and circuits.
Author : Colonel Wm. T. McLyman
Publisher : CRC Press
Page : 564 pages
File Size : 41,70 MB
Release : 2004-03-31
Category : Technology & Engineering
ISBN : 9780203913598
Extensively revised and expanded to present the state-of-the-art in the field of magnetic design, this third edition presents a practical approach to transformer and inductor design and covers extensively essential topics such as the area product, Ap, and core geometry, Kg. The book provides complete information on magnetic materials and core characteristics using step-by-step design examples and presents all the key components for the design of lightweight, high-frequency aerospace transformers or low-frequency commercial transformers. Written by a specialist with more than 47 years of experience in the field, this volume covers magnetic design theory with all of the relevant formulas.
Author : United States. Congress. House. Committee on Science. Subcommittee on Technology
Publisher :
Page : 110 pages
File Size : 28,9 MB
Release : 1996
Category : Business & Economics
ISBN :
Author :
Publisher :
Page : 1934 pages
File Size : 49,18 MB
Release : 1955
Category : Engineering
ISBN :
A file of manufacturers' catalogs compiled for the use of engineers and executives engaged in product development and design.
Author : Marian K. Kazimierczuk
Publisher : John Wiley & Sons
Page : 510 pages
File Size : 22,1 MB
Release : 2011-08-24
Category : Technology & Engineering
ISBN : 1119964911
If you are looking for a complete study of the fundamental concepts in magnetic theory, read this book. No other textbook covers magnetic components of inductors and transformers for high-frequency applications in detail. This unique text examines design techniques of the major types of inductors and transformers used for a wide variety of high-frequency applications including switching-mode power supplies (SMPS) and resonant circuits. It describes skin effect and proximity effect in detail to provide you with a sound understanding of high-frequency phenomena. As well as this, you will discover thorough coverage on: integrated inductors and the self-capacitance of inductors and transformers, with expressions for self-capacitances in magnetic components; criteria for selecting the core material, as well as core shape and size, and an evaluation of soft ferromagnetic materials used for magnetic cores; winding resistance at high frequencies; expressions for winding and core power losses when non-sinusoidal inductor or transformer current waveforms contain harmonics. Case studies, practical design examples and procedures (using the area product method and the geometry coefficient method) are expertly combined with concept-orientated explanations and student-friendly analysis. Supplied at the end of each chapter are summaries of the key concepts, review questions, and problems, the answers to which are available in a separate solutions manual. Such features make this a fantastic textbook for graduates, senior level undergraduates and professors in the area of power electronics in addition to electrical and computer engineering. This is also an inimitable reference guide for design engineers of power electronics circuits, high-frequency transformers and inductors in areas such as (SMPS) and RF power amplifiers and circuits.
Author : Edward C. Shaffer
Publisher : Materials Research Forum LLC
Page : 728 pages
File Size : 26,16 MB
Release : 2018-09-20
Category : Technology & Engineering
ISBN : 1945291788
This compendium reports fundamental science and engineering advances of the US Army Research Labratory (ARL) within the area of Energy and Power technologies. Although, in general, ARL's Materials Research encompasses a broad range of materials technologies (e.g.: Photonics, Electronics, Biological and Bio-inspired Materials, Structural Materials, High Strain and Ballistic Materials, and Manufacturing Science), this publication specifically addresses selected energy and power material related work at ARL. While this work includes electrochemical energy storage (batteries and capacitors) and electrochemical energy conversion (fuel cells, photoelectrochemistry, and photochemistry), special emphasis is given on electrochemical energy storage: • Micro Electro-Mechanical Systems (MEMS): Power density, efficiency, and robustness of motors, generators, and actuators while also reducing their life cycle costs. • Energy Storage: Electrical and electrochemical energy storage devices to decrease device size, weight, and cost as well as increase their capabilities in extreme temperatures and operating conditions. • Power Control and Distribution: Tactical, deployable power systems using conventional fuels, alternative fuels, and energy harvested from renewable/ambient sources. • Power Generation/Energy Conversion: Smart energy networks for platforms, forward operating bases, and facilities using modeling and simulation tools as well as new, greater capability and efficiency components. • Thermal Transport and Control: Heat and higher power density systems, advanced components, system modeling, and adaptive or hybrid-cycle technologies. Keywords: Electrochemical Energy Storage, Batteries, Capacitors, Electrochemical Energy Conversion, Fuel Cells, Photoelectrochemistry, Photochemistry, High Voltage Electrolytes, Li-ion Batteries, Li-ion Chemistry, Lithium–Sulphur Batteries, Nuclear Metastables, Pyroelectric Energy Conversion, Charged Quantum Dots, High-Efficiency Photovoltaics, IR Sensing, GaN Power Schottky Diodes, Threshold-Voltage Instability, Reliability Testing, SiC MOSFETs, Power Electronics Packaging, High Voltage 4H-SiC GTOs, Silicon Carbide, Avalanche Breakdown Diode, SiC PiN Diodes, Thyristor Protection, Compact DC-DC Battery Chargers
Author : W.G. Hurley
Publisher : John Wiley & Sons
Page : 374 pages
File Size : 19,63 MB
Release : 2013-04-29
Category : Technology & Engineering
ISBN : 1119950570
Based on the fundamentals of electromagnetics, this clear and concise text explains basic and applied principles of transformer and inductor design for power electronic applications. It details both the theory and practice of inductors and transformers employed to filter currents, store electromagnetic energy, provide physical isolation between circuits, and perform stepping up and down of DC and AC voltages. The authors present a broad range of applications from modern power conversion systems. They provide rigorous design guidelines based on a robust methodology for inductor and transformer design. They offer real design examples, informed by proven and working field examples. Key features include: emphasis on high frequency design, including optimisation of the winding layout and treatment of non-sinusoidal waveforms a chapter on planar magnetic with analytical models and descriptions of the processing technologies analysis of the role of variable inductors, and their applications for power factor correction and solar power unique coverage on the measurements of inductance and transformer capacitance, as well as tests for core losses at high frequency worked examples in MATLAB, end-of-chapter problems, and an accompanying website containing solutions, a full set of instructors’ presentations, and copies of all the figures. Covering the basics of the magnetic components of power electronic converters, this book is a comprehensive reference for students and professional engineers dealing with specialised inductor and transformer design. It is especially useful for senior undergraduate and graduate students in electrical engineering and electrical energy systems, and engineers working with power supplies and energy conversion systems who want to update their knowledge on a field that has progressed considerably in recent years.
Author : Jayasimha Atulasimha
Publisher : John Wiley & Sons
Page : 352 pages
File Size : 41,55 MB
Release : 2016-01-27
Category : Technology & Engineering
ISBN : 1118869257
Nanomagnetic and spintronic computing devices are strong contenders for future replacements of CMOS. This is an important and rapidly evolving area with the semiconductor industry investing significantly in the study of nanomagnetic phenomena and in developing strategies to pinpoint and regulate nanomagnetic reliably with a high degree of energy efficiency. This timely book explores the recent and on-going research into nanomagnetic-based technology. Key features: Detailed background material and comprehensive descriptions of the current state-of-the-art research on each topic. Focuses on direct applications to devices that have potential to replace CMOS devices for computing applications such as memory, logic and higher order information processing. Discusses spin-based devices where the spin degree of freedom of charge carriers are exploited for device operation and ultimately information processing. Describes magnet switching methodologies to minimize energy dissipation. Comprehensive bibliographies included for each chapter enabling readers to conduct further research in this field. Written by internationally recognized experts, this book provides an overview of a rapidly burgeoning field for electronic device engineers, field-based applied physicists, material scientists and nanotechnologists. Furthermore, its clear and concise form equips readers with the basic understanding required to comprehend the present stage of development and to be able to contribute to future development. Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing is also an indispensable resource for students and researchers interested in computer hardware, device physics and circuits design.