Modern Grinding Technology and Systems


Book Description

This specialist edition features key innovations in the science and engineering of new grinding processes, abrasives, tools, machines, and systems for a range of important industrial applications. Topics written by invited, internationally recognized authors review the advances and present results of research over a range of well-known grinding processes. A significant introductory review chapter explores innovations to achieve high productivity and very high precision in grinding. The reviewed applications range from grinding systems for very large lenses and reflectors, through to medium size grinding machine processes, and down to grinding very small components used in MEMS . Early research chapters explore the influence of grinding wheel topography on surface integrity and wheel wear. A novel chapter on abrasive processes also addresses the finishing of parts produced by additive manufacturing through mass finishing. Materials to be ground range from conventional engineering steels to aerospace materials, ceramics, and composites. The research findings highlight important new results for avoiding material sub-surface damage. The papers compiled in this book include references to many source publications which will be found invaluable for further research, such as new features introduced into control systems to improve process efficiency. The papers also reflect significant improvements and research findings relating to many aspects of grinding processes, including machines, materials, abrasives, wheel preparation, coolants, lubricants, and fluid delivery. Finally, a definitive chapter summarizes the optimal settings for high precision and the achievement of centerless grinding stability.




Metals Abstracts


Book Description




Technical Digest


Book Description




CIRP Annals


Book Description










Thermodynamic Mechanism of Cryogenic Air Minimum Quantity Lubrication Grinding


Book Description

The achievement of high-efficiency and precise grinding of difficult-to-cut metals—like titanium alloys—is essential in the aerospace industry. However, the process often results in thermal damage to the workpiece surface, posing a significant technical challenge. While minimum quantity lubrication (MQL) has been used to aid titanium alloy grinding, its effectiveness is limited by insufficient heat dissipation and lubrication. As an alternative to normal temperature air for carrying micro-lubricants, Cryogenic air has shown promise in improving oil film heat transfer and lubrication performance in the grinding zone, thus reducing workpiece surface thermal damage. The experimental state of the technology demands more comprehensive studies on its effectiveness and on the underlying mechanisms. Thermodynamic Mechanism of Cryogenic Air Minimum Quantity Lubrication Grinding addresses these challenges by providing a theoretical framework for understanding and optimizing cryogenic air minimum quantity lubrication in grinding processes, particularly for titanium alloys. It explores the physical characteristics of lubricants under cryogenic conditions, the influence of low temperatures on atomization effects, droplet formation dynamics, and heat transfer mechanisms within the grinding zone. By establishing quantitative relationships between cryogenic air parameters and lubricant properties, the book lays a foundation for enhancing the cooling lubrication mechanism of cryogenic air MQL in grinding processes. Researchers, scholars, and graduate students in universities and research institutes focusing on machining will find this book invaluable, as it goes beyond the theoretical insights into practical solutions to enhance grinding efficiency and reduce thermal damage.




SME Technical Paper


Book Description




Principles of Modern Grinding Technology


Book Description

Principles of Modern Grinding Technology, Second Edition, provides insights into modern grinding technology based on the author's 40 years of research and experience in the field. It provides a concise treatment of the principles involved and shows how grinding precision and quality of results can be improved and costs reduced. Every aspect of the grinding process--techniques, machines and machine design, process control, and productivity optimization aspects--come under the searchlight. The new edition is an extensive revision and expansion of the first edition covering all the latest developments, including center-less grinding and ultra-precision grinding. Analyses of factors that influence grinding behavior are provided and applications are presented assisted by numerical examples for illustration. The new edition of this well-proven reference is an indispensible source for technicians, engineers, researchers, teachers, and students who are involved with grinding processes. - Well-proven source revised and expanded by undisputed authority in the field of grinding processes - Coverage of the latest developments, such as ultra-precision grinding machine developments and trends in high-speed grinding - Numerically worked examples give scale to essential process parameters - The book as a whole and in particular the treatment of center-less grinding is considered to be unchallenged by other books




Tribology of Abrasive Machining Processes


Book Description

This book draws upon the science of tribology to understand, predict and improve abrasive machining processes. Pulling together information on how abrasives work, the authors, who are renowned experts in abrasive technology, demonstrate how tribology can be applied as a tool to improve abrasive machining processes. Each of the main elements of the abrasive machining system are looked at, and the tribological factors that control the efficiency and quality of the processes are described. Since grinding is by far the most commonly employed abrasive machining process, it is dealt with in particular detail. Solutions are posed to many of the most commonly experienced industrial problems, such as poor accuracy, poor surface quality, rapid wheel wear, vibrations, work-piece burn and high process costs. This practical approach makes this book an essential tool for practicing engineers. - Uses the science of tribology to improve understanding and of abrasive machining processes in order to increase performance, productivity and surface quality of final products - A comprehensive reference on how abrasives work, covering kinematics, heat transfer, thermal stresses, molecular dynamics, fluids and the tribology of lubricants - Authoritative and ground-breaking in its first edition, the 2nd edition includes 30% new and updated material, including new topics such as CMP (Chemical Mechanical Polishing) and precision machining for micro-and nano-scale applications