High-Energy Particle Diffraction


Book Description

A comprehensive and up-to-date overview of soft and hard diffraction processes in strong interaction physics. The first part covers soft hadron—hadron scattering in a complete and mature presentation. It can be used as a textbook in particle physics classes. Chapters 8-11 address graduate students as well as researchers, covering the "new diffraction": the pomeron in QCD, low-x physics, diffractive deep inelastic scattering and related processes.




Diffraction 2008


Book Description

The main purpose of the workshop was to review both experimental and theoretical aspects of the field of Diffraction in High Energy Particle Physics. The topics covered include diffraction in electron-nucleon collisions, forward physics in Hadron-hadron collisions, new results in polarization and spin physics, diffraction in heavy ion collisions, etc. New developments to identify significant progress and prospects for the Large Hadron Collider were largely discussed.







Applied RHEED


Book Description

The book describes RHEED (reflection high-energy electron diffraction) used as a tool for crystal growth. New methods using RHEED to characterize surfaces and interfaces during crystal growth by MBE (molecular beam epitaxy) are presented. Special emphasis is put on RHEED intensity oscillations, segregation phenomena, electron energy-loss spectroscopy and RHEED with rotating substrates.




High Energy Electron Diffraction and Microscopy


Book Description

This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using a general matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to familiarize the reader with practical applications. Diffuse and inelastic scattering and coherence effects are treated comprehensively both as a perturbation of elastic scattering and within the general multiple scattering quantum mechanical framework of the density matrix method. Among the highlights are the treatment of resonance diffraction of electrons, HOLZ diffraction, the formation of Kikuchi bands and lines and ring patterns, and application of diffraction to monitoring of growing surfaces. Useful practical data are summarised in tables including those of electron scattering factors for all the neutral atoms and many ions, and the temperature dependent Debye-Waller factors given for over 100 elemental crystals and compounds.




Particle Interactions at Very High Energies


Book Description

The Summer Institute on High Energy Physics was the second of this kind organized at Louvain. Four years ago we had already decided to organize a Summer Institute. The first one was con ceived in 1970, at Kiev, by D. Speiser, J. Weyers, and G. Zweig, and thanks to a NATO grant took place from August 20th to Septem ber 15th 1971, at Louvain in the Groot Begijnhof. All lectures were directed toward one subject: duality. The lecturers were R. Brout (ULB - Bruxelles), D. Fairlie (University of Durham), F. Gilman (SLAC - Stanford), D. Horn (University of Tel Aviv), J. Mandula (Caltech - Pasadena), C. Michael (CERN - Geneva), J. Rosner (University of Minnesota), C. Schmidt (CERN - Geneva), J. Veneziano (The Weizmann Institute), J. Weyers (UCL - Louvain and CERN - Geneva), and G. Zweig (Caltech - Pasadena). The direc tion was in the hands of F. Cerulus (KUL - Louvain), R. Rodenberg (Technische Hochschule, Aachen), D. Speiser (UCL - Louvain), and J. Weyers (CERN - Geneva). Unfortunately it was not possible to publish the lecture notes for that Institute. The second Summer Institute on Elementary Particle Physics took place from August 12th to August 25th 1973, again in Louvain. It was initiated in Chicago, in 1972, by F. Halzen (University of Wisconsin) and J. Weyers (UCL - Louvain and CERN - Geneva). Lecturers included R. Carlitz (University of Chicago), F. Gilman (SLAC - Stanford), F. Halzen (University of Wisconsin), D.




Diffraction ...


Book Description




Asymptotic Diffraction Theory and Nuclear Scattering


Book Description

Presents an explanation of diffractive nuclear scattering in terms of semi-classical trajectories.




High-energy Nuclear Optics of Polarized Particles


Book Description

The various phenomena caused by refraction and diffraction of polarized elementary particles in matter have opened up a new research area in the particle physics: nuclear optics of polarized particles. Effects similar to the well-known optical phenomena such as birefringence and Faraday effects, exist also in particle physics, though the particle wavelength is much less than the distance between atoms of matter. Current knowledge of the quasi-optical effects, which exist for all particles in any wavelength range (and energies from low to extremely high), will enable us to investigate different properties of interacting particles (nuclei) in a new aspect. This pioneering book will provide detailed accounts of quasi-optical phenomena in the particle polarization, and will interest physicists and professionals in experimental particle physics.




High energy diffraction


Book Description