High Frequency High Boost Ratio Dc-dc Converters with Wide Bandgap Devices for PV System Applications


Book Description

Chapter 4 focuses on solving common problems of high boost ratio resonant converters, such as large power requirements on the passive components, and high circulating current at light load conditions. Adaptive inductor is discussed as a possible way to decrease the system size and increase system efficiency. Chapter 5 proposes a family of switched capacitor-inductor (C-L) circuits which is largely based on parallel charging serial discharging technique. A comparison of the two solutions proposed in Chapter 4 and 5 shows that the solution in Chapter 5 is more feasible with available materials and existing technologies. Therefore, a 1.2 kW lab prototype, with an input voltage ranges between 20 V and 40 V and a constant output voltage at 1000 V was built and tested. During the tests, the switching frequency was set at 187.5 kHz. Experimental results have validated the proposed circuit topology and demonstrated a 96.1% peak efficiency and an overall efficiency over 94.5%.




High-Frequency Isolated Bidirectional Dual Active Bridge DC–DC Converters with Wide Voltage Gain


Book Description

Written by experts, this book is based on recent research findings in high-frequency isolated bidirectional DC-DC converters with wide voltage range. It presents advanced power control methods and new isolated bidirectional DC-DC topologies to improve the performance of isolated bidirectional converters. Providing valuable insights, advanced methods and practical design guides on the DC-DC conversion that can be considered in applications such as microgrid, bidirectional EV chargers, and solid state transformers, it is a valuable resource for researchers, scientists, and engineers in the field of isolated bidirectional DC-DC converters.







Non-Isolated DC-DC Converters for Renewable Energy Applications


Book Description

Photovoltaic (PV) energy generation is an excellent example of large-scale electric power generation through various parallel arrangements of small voltage-generating solar cells or modules. However, PV generation systems require power electronic converters system to satisfy the need for real-time applications or to balance the demand for power from electric. Therefore, a DC-DC power converter is a vital constituent in the intermediate conversion stage of PV power. This book presents a comprehensive review of various non-isolated DC-DC power converters. Non-isolated DC-DC converters for renewable energy system (RES) application presented in this book 1st edition through a detailed original investigation, obtained numerical/experimental results, and guided the scope to design new families of converters: DC-DC multistage power converter topologies, Multistage "X-Y converter family", Nx IMBC (Nx Interleaved Multilevel Boost Converter), Cockcroft Walton (CW) Voltage Multiplier-Based Multistage/Multilevel Power Converter (CW-VM-MPC) converter topologies, and Z-source and quasi Z-source. Above solutions are discussed to show how they can achieve the maximum voltage conversion gain ratio by adapting the passive/active component within the circuits. For assessment, we have recommended novel power converters through their functionality and designs, tested and verified by numerical software. Further, the hardware prototype implementation is carried out through a flexible digital processor. Both numerical and experimental results always shown as expected close agreement with primary theoretical hypotheses. This book offers guidelines and recommendation for future development with the DC-DC converters for RES applications based on cost-effective, and reliable solutions.




Advanced DC-DC Power Converters and Switching Converters


Book Description

Nowadays, power electronics is an enabling technology in the energy development scenario. Furthermore, power electronics is strictly linked with several fields of technological growth, such as consumer electronics, IT and communications, electrical networks, utilities, industrial drives and robotics, and transportation and automotive sectors. Moreover, the widespread use of power electronics enables cost savings and minimization of losses in several technology applications required for sustainable economic growth. The topologies of DC–DC power converters and switching converters are under continuous development and deserve special attention to highlight the advantages and disadvantages for use increasingly oriented towards green and sustainable development. DC–DC converter topologies are developed in consideration of higher efficiency, reliable control switching strategies, and fault-tolerant configurations. Several types of switching converter topologies are involved in isolated DC–DC converter and nonisolated DC–DC converter solutions operating in hard-switching and soft-switching conditions. Switching converters have applications in a broad range of areas in both low and high power densities. The articles presented in the Special Issue titled "Advanced DC-DC Power Converters and Switching Converters" consolidate the work on the investigation of the switching converter topology considering the technological advances offered by innovative wide-bandgap devices and performance optimization methods in control strategies used.




Power Electronics in Renewable Energy Systems and Smart Grid


Book Description

The comprehensive and authoritative guide to power electronics in renewable energy systems Power electronics plays a significant role in modern industrial automation and high- efficiency energy systems. With contributions from an international group of noted experts, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers a comprehensive review of the technology and applications of power electronics in renewable energy systems and smart grids. The authors cover information on a variety of energy systems including wind, solar, ocean, and geothermal energy systems as well as fuel cell systems and bulk energy storage systems. They also examine smart grid elements, modeling, simulation, control, and AI applications. The book's twelve chapters offer an application-oriented and tutorial viewpoint and also contain technology status review. In addition, the book contains illustrative examples of applications and discussions of future perspectives. This important resource: Includes descriptions of power semiconductor devices, two level and multilevel converters, HVDC systems, FACTS, and more Offers discussions on various energy systems such as wind, solar, ocean, and geothermal energy systems, and also fuel cell systems and bulk energy storage systems Explores smart grid elements, modeling, simulation, control, and AI applications Contains state-of-the-art technologies and future perspectives Provides the expertise of international authorities in the field Written for graduate students, professors in power electronics, and industry engineers, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers an up-to-date guide to technology and applications of a wide-range of power electronics in energy systems and smart grids.




Multi-MHz High Frequency Resonant DC-DC Power Converter


Book Description

This book analyzes multi-MHz high frequency resonant DC-DC power converters with operating frequencies ranging from several MHz to tens of MHz in detail, aiming to support researchers and engineers with a focus on multi-MHz high frequency converters. The inverter stage, rectifier stage, matching network stage are analyzed in detail. Based on the three basic stages, typical non-isolated and isolated resonant DC-DC converters are depicted. To reduce the high driving loss under multi-MHz, resonant driving methods are introduced and improved. Also, the design and selection methods of passive and active component under multi-MHz frequency are described, especially for aircore inductor and transformer. Furthermore, multi-MHz resonant converter provides an approach for achieving flexible system.




Energy-efficient and Power-dense DC-DC Converters in Data Center and Electric Vehicle Applications Using Wide Bandgap Devices


Book Description

The ever increasing demands in the energy conversion market propel power converters towards high efficiency and high power density. With fast development of data processing capability in the data center, the server will include more processors, memories, chipsets and hard drives than ever, which requires more efficient and compact power converters. Meanwhile, the energy-efficient and power-dense converters for the electric vehicle also result in longer driving range as well as more passengers and cargo capacities. DC-DC converters are indispensable power stages for both applications. In order to address the efficiency and density requirements of the DC-DC converters in these applications, several related research topics are discussed in this dissertation. For the DC-DC converter in the data center application, a LLC resonant converter based on the newly emerged GaN devices is developed to improve the efficiency over the traditional Si-based converter. The relationship between the critical device parameters and converter loss is established. A new perspective of extra winding loss due to the asymmetrical primary and secondary side current in LLC resonant converter is proposed. The extra winding loss is related to the critical device parameters as well. The GaN device benefits on device loss and transformer winding loss is analyzed. An improved LLC resonant converter design method considering the device loss and transformer winding loss is proposed. For the DC-DC converter in the electric vehicle application, an integrated DC-DC converter that combines the on-board charger DC-DC converter and drivetrain DC-DC converter is developed . The integrated DC-DC converter is considered to operate in different modes. The existing dual active bridge (DAB) DC-DC converter originally designed for the charger is proposed to operate in the drivetrain mode to improve the efficiency at the light load and high voltage step-up ratio conditions of the traditional drivetrain DC-DC converter. Design method and loss model are proposed for the integrated converter in the drivetrain mode. A scaled-down integrated DC-DC converter prototype is developed to verify the design and loss model.




High-frequency, High-power Resonant Converter with Wide Bandgap Devices for Wireless Power Transfer Systems


Book Description

As demand for electric vehicles (EVs) grows, wireless power transfer (WPT) technology becomes beneficial by removing the need for manual intervention to charge EV batteries. These high-power applications require power electronics systems that not only efficiently deliver sufficient power, but are also small enough to be embedded in the EV. However, while the size of other vehicle components has shrunk considerably over the past decade, that of power electronics systems has not. This presents a major challenge to making power electronics systems for EVs, plasma generation and other high-power industrial applications both efficient and small. This dissertation describes the design and implementation of efficient, compact power electronics systems for charging EVs and other industrial applications, as well as their extensions to WPT. A large part of this work involves overcoming technical limitations by designing high-power (above 2 kW) and high-efficiency (above 90%) systems to operate at tens of MHz switching frequency. First, wide bandgap (WBG) devices such as silicon carbide (SiC) MOSFETs or enhancement mode gallium nitride (eGaN) FETs are used to reduce the size and weight of the entire WPT system and improve system performance. With SiC MOSFETs and eGaN FETs, 2 kW resonant inverters and resonant rectifiers for WPT systems can successfully operate at 13.56 MHz switching frequency. Thus, this work opens up the possibility of achieving kilowatt-level output powers at MHz switching frequencies. After implementing a high-efficiency resonant inverter for the WPT system, the coupling coils must be designed very carefully to deliver power with high efficiency over a mid-range coil distance. Therefore, an open-type four-coil unit is also presented in this work. The advantage of the coils is that the resonant frequency can be changed by adjusting the length of copper wire and distance between two coils. Using this type of coil unit eliminates the need for external capacitors that incur additional losses. However, even when the coupling coils are designed and implemented perfectly to provide high efficiency, the WPT system performance may decrease because of misalignments between the transmitting and receiving coils. Specifically, resonant converters are sensitive to load variation, which increases losses in switching devices. The impedance of magnetic resonant coupling (MRC) coils seen by inverters can be easily changed according to the distance or alignment between transmitting and receiving coils. This is one of the main factors that degrades the overall efficiency of WPT systems. To overcome this issue, this dissertation introduces a new kind of matching network, called an impedance compression network (ICN), to maintain the robustness of coil efficiency in various coil positions. An ICN consisting of a resistance compression network (RCN) and a phase compression network (PCN) was designed and implemented to compensate for distance and alignment variations between coils in a WPT system. Using an ICN helps maintain zero voltage switching (ZVS) and zero dv/dt operation in a resonant inverter and achieve system performance of over 90% efficiency. While WPT systems offer a convenient way to enable high-power applications, a critical unresolved concern is the safety of these systems. This dissertation presents two safety guidelines for EMF exposure and previous studies that evaluate human exposure level compared to the values recommended in the regulations. However, the limits of human exposure to electric, magnetic and electromagnetic fields in high-power WPT systems have not been clearly demonstrated yet. Based on the guidelines and the previous research, future research is required to evaluate EMF exposure in high-frequency, high-power WPT systems. One of the challenges in designing WPT systems for EVs is the need to combine power amplifiers to obtain higher power levels. To address this problem, this dissertation proposes a power-combining resonant inverter that can be applied not only to WPT systems, but also plasma generation and other industrial applications. Current RF power amplifiers for plasma generation operate at very high frequency (VHF), but provide low efficiency around 70% because they use linear amplifier topologies. Using a resonant inverter with WBG devices provides high power while maintaining high efficiency in a 40.68 MHz plasma-generation system. However, WBG devices cannot effectively dissipate heat at frequencies above 40 MHz. To reduce the losses in each eGaN FET, a power-combining inverter based on a class Phi2 inverter is designed and implemented to provide 1.2 kW output power at 40.68 MHz. A configurable method used to tune a class Phi2 inverter allows us to easily connect four of them in parallel to create a power-combining inverter that can achieve up to 1.2 kW output power. Also, the proposed inverter topology reduces the power loss in each switching device, improving the power density of the resonant inverter. In conclusion, this dissertation proposes high-frequency, high-power resonant converters with WBG devices to improve the power density and efficiency of both WPT and plasma generation systems. Furthermore, it presents a novel ICN topology that mitigates misalignment problems caused by MRC coils.