High Impulse Voltage and Current Measurement Techniques


Book Description

Equipment to be installed in electric power-transmission and distribution systems must pass acceptance tests with standardized high-voltage or high-current test impulses which simulate the stress on the insulation caused by external lightning discharges and switching operations in the grid. High impulse voltages and currents are also used in many other fields of science and engineering for various applications. Therefore, precise impulse-measurement techniques are necessary, either to prevent an over- or understressing of the insulation or to guarantee the effectiveness and quality of the application. The target audience primarily comprises engineers and technicians but the book may also be beneficial for graduate students of high-voltage engineering and electrical power supply systems.




High Voltage Measurement Techniques


Book Description

This book conveys the theoretical and experimental basics of a well-founded measurement technique in the areas of high DC, AC and surge voltages as well as the corresponding high currents. Additional chapters explain the acquisition of partial discharges and the electrical measured variables. Equipment exposed to very high voltages and currents is used for the transmission and distribution of electrical energy. They are therefore tested for reliability before commissioning using standardized and future test and measurement procedures. Therefore, the book also covers procedures for calibrating measurement systems and determining measurement uncertainties, and the current state of measurement technology with electro-optical and magneto-optical sensors is discussed.




High-Voltage Test and Measuring Techniques


Book Description

The new edition of this book incorporates the recent remarkable changes in electric power generation, transmission and distribution. The consequences of the latest development to High Voltage (HV) test and measuring techniques result in new chapters on Partial Discharge measurements, Measurements of Dielectric Properties, and some new thoughts on the Shannon Theorem and Impuls current measurements. This standard reference of the international high-voltage community combines high voltage engineering with HV testing techniques and HV measuring methods. Based on long-term experience gained by the authors the book reflects the state of the art as well as the future trends in testing and diagnostics of HV equipment. It ensures a reliable generation, transmission and distribution of electrical energy. The book is intended not only for experts but also for students in electrical engineering and high-voltage engineering.




High Voltage Test Techniques


Book Description

New insulating materials, computing methods and voltage levels pose problems or open up methods of solution; electromagnetic compatibility or components and systems also demand attention. This edition aims to bring the reader up-to-date with developments in high voltage and measurement technology.




High Voltage Engineering and Testing


Book Description

High voltage, Electrical engineering, Electronic engineering, Electrical testing, Building and Construction




Foundations of Pulsed Power Technology


Book Description

Examines the foundation of pulse power technology in detail to optimize the technology in modern engineering settings Pulsed power technologies could be an answer to many cutting-edge applications. The challenge is in how to develop this high-power/high-energy technology to fit current market demands of low-energy consuming applications. This book provides a comprehensive look at pulsed power technology and shows how it can be improved upon for the world of today and tomorrow. Foundations of Pulsed Power Technology focuses on the design and construction of the building blocks as well as their optimum assembly for synergetic high performance of the overall pulsed power system. Filled with numerous design examples throughout, the book offers chapter coverage on various subjects such as: Marx generators and Marx-like circuits; pulse transformers; pulse-forming lines; closing switches; opening switches; multi-gigawatt to multi-terawatt systems; energy storage in capacitor banks; electrical breakdown in gases; electrical breakdown in solids, liquids and vacuum; pulsed voltage and current measurements; electromagnetic interference and noise suppression; and EM topology for interference control. In addition, the book: Acts as a reference for practicing engineers as well as a teaching text Features relevant design equations derived from the fundamental concepts in a single reference Contains lucid presentations of the mechanisms of electrical breakdown in gaseous, liquid, solid and vacuum dielectrics Provides extensive illustrations and references Foundations of Pulsed Power Technology will be an invaluable companion for professionals working in the fields of relativistic electron beams, intense bursts of light and heavy ions, flash X-ray systems, pulsed high magnetic fields, ultra-wide band electromagnetics, nuclear electromagnetic pulse simulation, high density fusion plasma, and high energy- rate metal forming techniques.




High Voltage Engineering


Book Description

This book is based on the leading German reference book on high voltage engineering. It includes innovative insulation concepts, new physical knowledge and new insulating materials, emerging techniques for testing, measuring and diagnosis, as well as new fields of application, such as high voltage direct current (HVDC) transmission. It provides an excellent access to high voltage engineering – for engineers, experts and scientists, as well as for students. High voltage engineering is not only a key technology for a safe, economic and sustainable electricity supply, which has become one of the most important challenges for modern society. Furthermore, a broad spectrum of industrial applications of high voltage technologies is used in most of the innovative fields of engineering and science. The book comprehensively covers the contents ranging from electrical field stresses and dielectric strengths through dielectrics, materials and technologies to typical insulation systems for AC, DC and impulse stresses. Thereby, the book provides a unique and successful combination of scientific foundations, modern technologies and practical applications, and it is clearly illustrated by many figures, examples and exercises. Therefore, it is an essential tool both for teaching at universities and for the users of high voltage technologies.




Proceedings of the 21st International Symposium on High Voltage Engineering


Book Description

High voltage engineering is extremely important for the reliable design, safe manufacture and operation of electric devices, equipment and electric power systems. The 21st International Symposium on High Voltage Engineering, organized by the 90 years old Budapest School of High Voltage Engineering, provides an excellent forum to present results, advances and discussions among engineers, researchers and scientists, and share ideas, knowledge and expertise on high voltage engineering. The proceedings of the conference presents the state of the art technology of the field. The content is simultaneously aiming to help practicing engineers to be able to implement based on the papers and researchers to link and further develop ideas.




High Voltage Engineering Fundamentals


Book Description

Power transfer for large systems depends on high system voltages. The basics of high voltage laboratory techniques and phenomena, together with the principles governing the design of high voltage insulation, are covered in this book for students, utility engineers, designers and operators of high voltage equipment. In this new edition the text has been entirely revised to reflect current practice. Major changes include coverage of the latest instrumentation, the use of electronegative gases such as sulfur hexafluoride, modern diagnostic techniques, and high voltage testing procedures with statistical approaches. - A classic text on high voltage engineering - Entirely revised to bring you up-to-date with current practice - Benefit from expanded sections on testing and diagnostic techniques




Test bench design for power measurement of inverter-operated machines in the medium voltage range


Book Description

This thesis gives an overview of test bench design for inverter operated Medium Voltage (MV) drives with the focus on the active power measurement. The sources of measurement setup uncertainty are analysed and methods are shown to assess these uncertainties. Further, a possibility is shown to do quantitative uncertainty estimations which are verified with measurements through different measurement setups for MV drives operated with multilevel converters. The influence of measurement transducers, voltage dividers, power meters and data acquisition boards are considered. The digital signal processing is analysed and the possibilities to reduce its uncertainty contribution on an active power measurement is shown. An analysis is made with the conventional measurement devices in the MV-range. The transfer behaviour of the devices and the characteristics of the uncertainty are investigated. Measurements are done on typical medium voltage drives with an uncertainty analysis, which shows the essential aspects of active power measurement. The results show the significance of a measurement setup performance. The investigations on the drives are used to indicate the impact on the determination of the drive efficiency and gives a significant input for further standardisation processes. The handling of measurement uncertainties during active power measurement of drives is shown concerning the permanent topic of energy saving and its efficient use. The work proposes a way of categorising electrical drives in energy efficiency classes and to make their determination comparable. Die vorliegende Dissertation gibt einen Überblick über den Prüfstandsaufbau von umrichtergetriebenen Mittelspannungsantrieben. Die Unsicherheitsquellen werden analysiert und Methoden werden aufgezeigt um die Messunsicherheit zu bewerten. Des Weiteren werden die Machbarkeit von Unsicherheitsabschätzungen gezeigt, welche mit Messungen an typischen Mittelspannungsantrieben mit Umrichterspeisung verglichen werden. Der Einfluss von Messwandlern, Spannungsteilern, Leistungsmessern und Messkarten zur Signalerfassung wird berücksichtigt. Die digitale Signalverarbeitung wird analysiert um den Unsicherheitsbeitrag zur Wirkleistungsmessung zu reduzieren. Es werden konventionellen Messwandler und -teiler im Mittelspannungsbereich bezüglich ihres Übertragungsverhal- tens sowie Messunsicherheiten untersucht. Die Ergebnisse der Untersuchungen verdeutlichen die Signifikanz eines performanten Messaufbaus. Des Weiteren werden Auswirkun- gen auf die Bestimmung der Effizienz aufgezeigt. Die Arbeit liefert einen wesentlichen Beitrag für weitere Standardisierungsprozesse. Der Umgang mit Messunsicherheiten der Wirkleistungsmessung wird betrachtet im Hinblick auf Energieeinsparpotenziale und deren effiziente Nutzung. Die Arbeit schlägt eine Möglichkeit vor, wie elektrische Antriebe in Energieeffizienzklassen kategorisiert werden können um diese vergleichbar zu machen.