High-Integrity System Specification and Design


Book Description

Errata, detected in Taylor's Logarithms. London: 4to, 1792. [sic] 14.18.3 6 Kk Co-sine of 3398 3298 - Nautical Almanac (1832) In the list of ERRATA detected in Taylor's Logarithms, for cos. 4° 18'3", read cos. 14° 18'2". - Nautical Almanac (1833) ERRATUM ofthe ERRATUM ofthe ERRATA of TAYLOR'S Logarithms. For cos. 4° 18'3", read cos. 14° 18' 3". - Nautical Almanac (1836) In the 1820s, an Englishman named Charles Babbage designed and partly built a calculating machine originally intended for use in deriving and printing logarithmic and other tables used in the shipping industry. At that time, such tables were often inaccurate, copied carelessly, and had been instrumental in causing a number of maritime disasters. Babbage's machine, called a 'Difference Engine' because it performed its cal culations using the principle of partial differences, was intended to substantially reduce the number of errors made by humans calculating the tables. Babbage had also designed (but never built) a forerunner of the modern printer, which would also reduce the number of errors admitted during the transcription of the results. Nowadays, a system implemented to perform the function of Babbage's engine would be classed as safety-critical. That is, the failure of the system to produce correct results could result in the loss of human life, mass destruction of property (in the form of ships and cargo) as well as financial losses and loss of competitive advantage for the shipping firm.




High Integrity Systems and Safety Management in Hazardous Industries


Book Description

This book is about the engineering management of hazardous industries, such as oil and gas production, hydrocarbon refining, nuclear power and the manufacture of chemicals and pharmaceuticals. Its scope includes an overview of design standards and processes for high integrity systems,safety management processes as applied to hazardous industries and details best practices in design, operations, maintenance and regulation. Selected case studies are used to show how the complex multidisciplinary enterprises to design and operate hazardous plant can sometimes fail. This includes the subtlety and fragility of the robust safety culture that is required. It is aimed at professional engineers who design, build and operate these hazardous plants. This book is also written for business schools and university engineering departments where engineering management is studied. - An overview of design standards and processes for high integrity systems - An overview of safety management processes as applied to hazardous industries - Best practices in design, operations, maintenance and regulation




High-Integrity Software


Book Description

4. 3 The Gypsy language 72 4. 4 The Gypsy Verification Environment 73 4. 5 A simple example 81 4. 6 Specification data types 91 4. 7 Future directions 95 100 4. 8 Conclusions 5 Reliable programming in standard languages 102 Bernard Carre, Program Validation Ltd. 5. 1 Introduction 102 5. 2 Language requirements for high-integrity programming 103 5. 3 The use of standard languages 108 5. 4 Programming in Pascal and Ada 110 1'19 5. 5 Practical experiences NewSpeak: a reliable programming language 6 122 I. F. Currie, Royal Signals and Radar Establishment 6. 1 Introduction 122 6. 2 Types and values 127 6. 3 Declarations and variables 132 6. 4 Guarded declarations 134 6. 5 Cases and conditionals 136 6. 6 Loops 138 6. 7 Procedures 140 6. 8 Assertions 145 6. 9 Timing 147 6. 10 Conclusion 149 6. 11 Appendix 1: summary of syntax 150 6. 12 Appendix 2: type lattice and widening 156 7 Program analysis and systematic testing 159 M. A. Hennell, University of Liverpool, and D. Hedley and I. J. Riddell, Liverpool Data Research Associates Ltd. 7. 1 Introduction 159 7. 2 The basic requirement 160 7. 3 The Liverpool experience 161 7. 4 The Liverpool experiments 162 7. 5 The LDRA Testbeds 163 Interpretation 169 7. 6 7. 7 Applicability and benefits 171 7. 8 Safety-critical systems 173 VI 8 Program analysis and verification 176 Bernard Carre, Program Validation Ltd. 8. 1 Introduction 176 8.




IoT Protocols and Applications for Improving Industry, Environment, and Society


Book Description

"This book studies how daily life operates using many objects with Internet connections such as smartphones, tablets, Smart TVs, micro-controllers, Smart Tags, computers, laptops, cars, cheaper sensors, and more, commonly referred to as the Internet of Things. To accommodate this new connected structure, readers will learn how improved wireless strategies drive the need for a better IoT network"--




Software Specification Methods


Book Description

This title provides a clear overview of the main methods, and has a practical focus that allows the reader to apply their knowledge to real-life situations. The following are just some of the techniques covered: UML, Z, TLA+, SAZ, B, OMT, VHDL, Estelle, SDL and LOTOS.




High Integrity Software


Book Description

The second half of the twentieth century has witnessed remarkable advances in technology. The unquestioned leader in this race has been computer technology. Even the most modest personal computers today have computing power that would have astounded the leading technol ogists a few decades earlier, and what's more, similar advances are pre dicted for many years to come. Looking towards the future, it has been conservatively estimated that in 2047 computers could easily be 100,000 times more powerful than they were in 1997 (Moore's law [Moore] would lead to an increase on the order of around 10 billion) [Bell]. Because of its enormous capability, computer technology is becoming pervasive across the technology spectrum. Nowadays it is not surpris ing to discover that very common household gadgets like your toaster contain computer technology. Televisions, microwave ovens, and even electric shavers contain software. And what's more, the use of computer technology has been estimated to double every two years [Gibbs]. In order to keep up with the growing technology demands and to fully utilize the ever more powerful computing platforms, software projects have become more and more ambitious. This has lead to software systems becoming dominant forces in system functionality. Further more, the ambition to realize significant portions of a system's function ality through software has extended into the high consequence realm. Presently, software controls many critical functions in (1) airplanes, (2) electronic commerce, (3) space-bound systems, (4) medical systems, and (5) various transportation systems such as automobiles and trains.




Real Time Computing


Book Description

NATO's Division of Scientific and Environmental Affairs sponsored this Advan ced Study Institute because it was felt to be timely to cover this important and challengjng subject for the first time in the framework of NATO's ASI programme. The significance of real-time systems in everyones' life is rapidly growing. The vast spectrum of these systems can be characterised by just a few examples of increasing complexity: controllers in washing machines, air traffic control systems, control and safety systems of nuclear power plants and, finally, future military systems like the Strategic Defense Initiative (SDI). The import ance of such systems for the well-being of people requires considerable efforts in research and development of highly reliable real-time systems. Furthermore, the competitiveness and prosperity of entire nations now depend on the early app lication and efficient utilisation of computer integrated manufacturing systems (CIM), of which real-time systems are an essential and decisive part. Owing to its key significance in computerised defence systems, real-time computing has also a special importance for the Alliance. The early research and development activities in this field in the 1960s and 1970s aimed towards improving the then unsatisfactory software situation. Thus, the first high-level real-time languages were defined and developed: RTL/2, Coral 66, Procol, LTR, and PEARL. In close connection with these language develop ments and with the utilisation of special purpose process control peripherals, the research on real-time operating systems advanced considerably.




A Practical Guide to Security Engineering and Information Assurance


Book Description

Today the vast majority of the world's information resides in, is derived from, and is exchanged among multiple automated systems. Critical decisions are made, and critical action is taken based on information from these systems. Therefore, the information must be accurate, correct, and timely, and be manipulated, stored, retrieved, and exchanged s




Computing Handbook, Third Edition


Book Description

Computing Handbook, Third Edition: Computer Science and Software Engineering mirrors the modern taxonomy of computer science and software engineering as described by the Association for Computing Machinery (ACM) and the IEEE Computer Society (IEEE-CS). Written by established leading experts and influential young researchers, the first volume of this popular handbook examines the elements involved in designing and implementing software, new areas in which computers are being used, and ways to solve computing problems. The book also explores our current understanding of software engineering and its effect on the practice of software development and the education of software professionals. Like the second volume, this first volume describes what occurs in research laboratories, educational institutions, and public and private organizations to advance the effective development and use of computers and computing in today’s world. Research-level survey articles provide deep insights into the computing discipline, enabling readers to understand the principles and practices that drive computing education, research, and development in the twenty-first century.




Industrial-Strength Formal Methods in Practice


Book Description

Industrial Strength Formal Methods in Practice provides hands-on experience and guidance for anyone who needs to apply formal methods successfully in an industrial context. Each chapter is written by an expert in software engineering or formal methods, and contains background information, introductions to the techniques being used, actual fragments of formalised components, details of results and an analysis of the overall approach. It provides specific details on how to produce high-quality software that comes in on-time and within budget. Aimed mainly at practitioners in software engineering and formal methods, this book will also be of interest to the following groups; academic researchers working in formal methods who are interested in evidence of their success and in how they can be applied on an industrial scale, and students on advanced software engineering courses who need real-life specifications and examples on which to base their work.