High-order finite difference approximations for hyperbolic problems


Book Description

In this thesis, we use finite difference operators with the Summation-By-Partsproperty (SBP) and a weak boundary treatment, known as SimultaneousApproximation Terms (SAT), to construct high-order accurate numerical schemes.The SBP property and the SAT’s makes the schemes provably stable. The numerical procedure is general, and can be applied to most problems, but we focus on hyperbolic problems such as the shallow water, Euler and wave equations. For a well-posed problem and a stable numerical scheme, data must be available at the boundaries of the domain. However, there are many scenarios where additional information is available inside the computational domain. In termsof well-posedness and stability, the additional information is redundant, but it can still be used to improve the performance of the numerical scheme. As a first contribution, we introduce a procedure for implementing additional data using SAT’s; we call the procedure the Multiple Penalty Technique (MPT). A stable and accurate scheme augmented with the MPT remains stable and accurate. Moreover, the MPT introduces free parameters that can be used to increase the accuracy, construct absorbing boundary layers, increase the rate of convergence and control the error growth in time. To model infinite physical domains, one need transparent artificial boundary conditions, often referred to as Non-Reflecting Boundary Conditions (NRBC). In general, constructing and implementing such boundary conditions is a difficult task that often requires various approximations of the frequency and range of incident angles of the incoming waves. In the second contribution of this thesis,we show how to construct NRBC’s by using SBP operators in time. In the final contribution of this thesis, we investigate long time error bounds for the wave equation on second order form. Upper bounds for the spatial and temporal derivatives of the error can be obtained, but not for the actual error. The theoretical results indicate that the error grows linearly in time. However, the numerical experiments show that the error is in fact bounded, and consequently that the derived error bounds are probably suboptimal.




Finite Difference Methods for Ordinary and Partial Differential Equations


Book Description

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.




Time-Dependent Problems and Difference Methods


Book Description

Praise for the First Edition ". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations." —SIAM Review Time-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-dependent problems. The book treats differential equations and difference methods with a parallel development, thus achieving a more useful analysis of numerical methods. The Second Edition presents hyperbolic equations in great detail as well as new coverage on second-order systems of wave equations including acoustic waves, elastic waves, and Einstein equations. Compared to first-order hyperbolic systems, initial-boundary value problems for such systems contain new properties that must be taken into account when analyzing stability. Featuring the latest material in partial differential equations with new theorems, examples, and illustrations,Time-Dependent Problems and Difference Methods, Second Edition also includes: High order methods on staggered grids Extended treatment of Summation By Parts operators and their application to second-order derivatives Simplified presentation of certain parts and proofs Time-Dependent Problems and Difference Methods, Second Edition is an ideal reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs and to predict and investigate physical phenomena. The book is also excellent for graduate-level courses in applied mathematics and scientific computations.




High Order Difference Methods for Time Dependent PDE


Book Description

This book covers high order finite difference methods for time dependent PDE. It gives an overview of the basic theory and construction principles by using model examples. The book also contains a general presentation of the techniques and results for well-posedness and stability, with inclusion of the three fundamental methods of analysis both for PDE in its original and discretized form: the Fourier transform, the eneregy method and the Laplace transform.




Finite Volume Methods for Hyperbolic Problems


Book Description

This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.




Polynomial Chaos Methods for Hyperbolic Partial Differential Equations


Book Description

This monograph presents computational techniques and numerical analysis to study conservation laws under uncertainty using the stochastic Galerkin formulation. With the continual growth of computer power, these methods are becoming increasingly popular as an alternative to more classical sampling-based techniques. The text takes advantage of stochastic Galerkin projections applied to the original conservation laws to produce a large system of modified partial differential equations, the solutions to which directly provide a full statistical characterization of the effect of uncertainties. Polynomial Chaos Methods of Hyperbolic Partial Differential Equations focuses on the analysis of stochastic Galerkin systems obtained for linear and non-linear convection-diffusion equations and for a systems of conservation laws; a detailed well-posedness and accuracy analysis is presented to enable the design of robust and stable numerical methods. The exposition is restricted to one spatial dimension and one uncertain parameter as its extension is conceptually straightforward. The numerical methods designed guarantee that the solutions to the uncertainty quantification systems will converge as the mesh size goes to zero. Examples from computational fluid dynamics are presented together with numerical methods suitable for the problem at hand: stable high-order finite-difference methods based on summation-by-parts operators for smooth problems, and robust shock-capturing methods for highly nonlinear problems. Academics and graduate students interested in computational fluid dynamics and uncertainty quantification will find this book of interest. Readers are expected to be familiar with the fundamentals of numerical analysis. Some background in stochastic methods is useful but notnecessary.




Handbook of Numerical Methods for Hyperbolic Problems


Book Description

Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations. - Provides detailed, cutting-edge background explanations of existing algorithms and their analysis - Ideal for readers working on the theoretical aspects of algorithm development and its numerical analysis - Presents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or readers involved in applications - Written by leading subject experts in each field who provide breadth and depth of content coverage




Eigenvalue analysis and convergence acceleration techniques for summation-by-parts approximations


Book Description

Many physical phenomena can be described mathematically by means of partial differential equations. These mathematical formulations are said to be well-posed if a unique solution, bounded by the given data, exists. The boundedness of the solution can be established through the so-called energy-method, which leads to an estimate of the solution by means of integration-by-parts. Numerical approximations mimicking integration-by-parts discretely are said to fulfill the Summation-By-Parts (SBP) property. These formulations naturally yield bounded approximate solutions if the boundary conditions are weakly imposed through Simultaneous-Approximation-Terms (SAT). Discrete problems with bounded solutions are said to be energy-stable. Energy-stable and high-order accurate SBP-SAT discretizations for well-posed linear problems were first introduced for centered finite-difference methods. These mathematical formulations, based on boundary conforming grids, allow for an exact mimicking of integration-by-parts. However, other discretizations techniques that do not include one or both boundary nodes, such as pseudo-spectral collocation methods, only fulfill a generalized SBP (GSBP) property but still lead to energy-stable solutions. This thesis consists of two main topics. The first part, which is mostly devoted to theoretical investigations, treats discretizations based on SBP and GSBP operators. A numerical approximation of a conservation law is said to be conservative if the approximate solution mimics the physical conservation property. It is shown that conservative and energy-stable spatial discretizations of variable coefficient problems require an exact numerical mimicking of integration-by-parts. We also discuss the invertibility of the algebraic problems arising from (G)SBP-SAT discretizations in time of energy-stable spatial approximations. We prove that pseudo-spectral collocation methods for the time derivative lead to invertible fully-discrete problems. The same result is proved for second-, fourth- and sixth-order accurate finite-difference based time integration methods. Once the invertibility of (G)SBP-SAT discrete formulations is established, we are interested in efficient algorithms for the unique solution of such problems. To this end, the second part of the thesis has a stronger experimental flavour and deals with convergence acceleration techniques for SBP-SAT approximations. First, we consider a modified Dual Time-Stepping (DTS) technique which makes use of two derivatives in pseudo-time. The new DTS formulation, compared to the classical one, accelerates the convergence to steady-state and reduces the stiffness of the problem. Next, we investigate multi-grid methods. For parabolic problems, highly oscillating error modes are optimally damped by iterative methods, while smooth residuals are transferred to coarser grids. In this case, we show that the Galerkin condition in combination with the SBP-preserving interpolation operators leads to fast convergence. For hyperbolic problems, low frequency error modes are rapidly expelled by grid coarsening, since coarser grids have milder stability restrictions on time steps. For such problems, Total Variation Dimishing Multi-Grid (TVD-MG) allows for faster wave propagation of first order upwind discretizations. In this thesis, we extend low order TVD-MG schemes to high-order SBP-SAT upwind discretizations.




Numerical Solution of Differential Equations


Book Description

A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.




Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws


Book Description

In January 2012 an Oberwolfach workshop took place on the topic of recent developments in the numerics of partial differential equations. Focus was laid on methods of high order and on applications in Computational Fluid Dynamics. The book covers most of the talks presented at this workshop.