High-performance Communication Networks


Book Description

Retaining the first edition's technology-centred perspective, this book gives readers a sound understanding of packed-switched, circuit-switched and ATM networks, and techniques for controlling them.




High Performance Browser Networking


Book Description

How prepared are you to build fast and efficient web applications? This eloquent book provides what every web developer should know about the network, from fundamental limitations that affect performance to major innovations for building even more powerful browser applications—including HTTP 2.0 and XHR improvements, Server-Sent Events (SSE), WebSocket, and WebRTC. Author Ilya Grigorik, a web performance engineer at Google, demonstrates performance optimization best practices for TCP, UDP, and TLS protocols, and explains unique wireless and mobile network optimization requirements. You’ll then dive into performance characteristics of technologies such as HTTP 2.0, client-side network scripting with XHR, real-time streaming with SSE and WebSocket, and P2P communication with WebRTC. Deliver superlative TCP, UDP, and TLS performance Speed up network performance over 3G/4G mobile networks Develop fast and energy-efficient mobile applications Address bottlenecks in HTTP 1.x and other browser protocols Plan for and deliver the best HTTP 2.0 performance Enable efficient real-time streaming in the browser Create efficient peer-to-peer videoconferencing and low-latency applications with real-time WebRTC transports




Analysis of Computer and Communication Networks


Book Description

Analysis of Computer and Communication Networks provides the basic techniques for modeling and analyzing two of the fundamental components of high performance networks: switching equipment, and software employed at the end nodes and intermediate switches. The book also reviews the design options used to build efficient switching equipment. Topics covered include Markov chains and queuing analysis, traffic modeling, interconnection networks, and switch architectures and buffering strategies. This book covers the mathematical theory and techniques necessary for analyzing telecommunication systems. Queuing and Markov chain analyses are provided for many protocols currently in use. The book then discusses in detail applications of Markov chains and queuing analysis to model more than 15 communications protocols and hardware components.




Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks


Book Description

Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks Presents the technological advancements that enable high spectral-efficiency and high-capacity fiber-optic communication systems and networks This book examines key technology advances in high spectral-efficiency fiber-optic communication systems and networks, enabled by the use of coherent detection and digital signal processing (DSP). The first of this book’s 16 chapters is a detailed introduction. Chapter 2 reviews the modulation formats, while Chapter 3 focuses on detection and error correction technologies for coherent optical communication systems. Chapters 4 and 5 are devoted to Nyquist-WDM and orthogonal frequency-division multiplexing (OFDM). In chapter 6, polarization and nonlinear impairments in coherent optical communication systems are discussed. The fiber nonlinear effects in a non-dispersion-managed system are covered in chapter 7. Chapter 8 describes linear impairment equalization and Chapter 9 discusses various nonlinear mitigation techniques. Signal synchronization is covered in Chapters 10 and 11. Chapter 12 describes the main constraints put on the DSP algorithms by the hardware structure. Chapter 13 addresses the fundamental concepts and recent progress of photonic integration. Optical performance monitoring and elastic optical network technology are the subjects of Chapters 14 and 15. Finally, Chapter 16 discusses spatial-division multiplexing and MIMO processing technology, a potential solution to solve the capacity limit of single-mode fibers. Contains basic theories and up-to-date technology advancements in each chapter Describes how capacity-approaching coding schemes based on low-density parity check (LDPC) and spatially coupled LDPC codes can be constructed by combining iterative demodulation and decoding Demonstrates that fiber nonlinearities can be accurately described by some analytical models, such as GN-EGN model Presents impairment equalization and mitigation techniques Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks is a reference for researchers, engineers, and graduate students.




High-Performance Backbone Network Technology


Book Description

Compiling the most influential papers from the IEICE Transactions in Communications, High-Performance Backbone Network Technology examines critical breakthroughs in the design and provision of effective public service networks in areas including traffic control, telephone service, real-time video transfer, voice and image transmission for a content delivery network (CDN), and Internet access. The contributors explore system structures, experimental prototypes, and field trials that herald the development of new IP networks that offer quality-of-service (QoS), as well as enhanced security, reliability, and function. Offers many hints and guidelines for future research in IP and photonic backbone network technologies




Performance Modeling and Analysis of Communication Networks


Book Description

This textbook provides an introduction to common methods of performance modeling and analysis of communication systems. These methods form the basis of traffic engineering, teletraffic theory, and analytical system dimensioning. The fundamentals of probability theory, stochastic processes, Markov processes, and embedded Markov chains are presented. Basic queueing models are described with applications in communication networks. Advanced methods are presented that have been frequently used in recent practice, especially discrete-time analysis algorithms, or which go beyond classical performance measures such as Quality of Experience or energy efficiency. Recent examples of modern communication networks include Software Defined Networking and the Internet of Things. Throughout the book, illustrative examples are used to provide practical experience in performance modeling and analysis. Target group: The book is aimed at students and scientists in computer science and technical computer science, operations research, electrical engineering and economics.




Communication Networks for Smart Grids


Book Description

This book presents an application-centric approach to the development of smart grid communication architecture. The coverage includes in-depth reviews of such cutting-edge applications as advanced metering infrastructure, distribution automation, demand response and synchrophasors. Features: examines a range of exciting utility applications made possible through smart grid evolution; describes the core-edge network architecture for smart grids, introducing the concept of WANs and FANs; explains how the network design paradigm for smart grids differs from that for more established data networks, and discusses network security in smart grids; provides an overview of communication network technologies for WANs and FANs, covering OPGW, PLC, and LTE and MPLS technology; investigates secure data-centric data management and data analytics for smart grids; discusses the transformation of a network from conventional modes of utility operation to an integrated network based on the smart grid architecture framework.




Fundamental and Supportive Technologies for 5G Mobile Networks


Book Description

Mobile wireless communication systems have affected every aspect of life. By providing seamless connectivity, these systems enable almost all the smart devices in the world to communicate with high speed throughput and extremely low latency. The next generation of cellular mobile communications, 5G, aims to support the tremendous growth of interconnected things/devices (i.e., internet of things [IoT]) using the current technologies and extending them to be used in higher frequencies to cope with the huge number of different devices. In addition, 5G will provide massive capacity, high throughput, lower end-to-end delay, green communication, cost reduction, and extended coverage area. Fundamental and Supportive Technologies for 5G Mobile Networks provides detailed research on technologies used in 5G, their benefits, practical designs, and recent challenges and focuses on future applications that could exploit 5G network benefits. The content within this publication examines cellular communication, data transmission, and high-speed communication. It is designed for network analysts, IT specialists, industry professionals, software engineers, researchers, academicians, students, and scientists.




Wireless Ad hoc and Sensor Networks


Book Description

With modern communication networks continuing to grow in traffic, size, complexity, and variety, control systems are critical to ensure quality and effectively manage network traffic. Providing a thorough and authoritative introduction, Wireless Ad hoc and Sensor Networks: Protocols, Performance, and Control examines the theory, architectures, and technologies needed to implement quality of service (QoS) in a wide variety of communication networks. Based on years of research and practical experience, this book examines the technical concepts underlying the design, implementation, research, and invention of both wired and wireless networks. The author builds a strong understanding of general concepts and common principles while also exploring issues that are specific to wired, cellular, wireless ad hoc, and sensor networks. Beginning with an overview of networks and QoS control, he systematically explores timely areas such as Lyapunov analysis, congestion control of high-speed networks, admission control based on hybrid system theory, distributed power control of various network types, link state routing using QoS parameters, and predictive congestion control. The book also provides a framework for implementing QoS control using mote hardware. Providing a deeply detailed yet conveniently practical guide to QoS implementation, Wireless Ad hoc and Sensor Networks: Protocols, Performance, and Control is the perfect introduction for anyone new to the field as well as an ideal reference guide for seasoned network practitioners.




Energy Efficient Cooperative Wireless Communication and Networks


Book Description

Compared with conventional communications, cooperative communication allows multiple users in a wireless network to coordinate their packet transmissions and share each other's resources, thus achieving high-performance gain and better service coverage and reliability. Energy Efficient Cooperative Wireless Communication and Networks provides a comprehensive look at energy efficiency and system design of cooperative wireless communication. Introducing effective cooperative wireless communication schemes, the book supplies the understanding and methods required to improve energy efficiency, reliability, and end-to-end protocol designs for wireless communication systems. It explains the practical benefits and limitations of cooperative transmissions along with the associated designs of upper-layer protocols, including MAC, routing, and transport protocol. The book considers power efficiency as a main objective in cooperative communication to ensure quality-of-service (QoS) requirements. It explains how to bring the performance gain at the physical layer up to the network layer and how to allocate network resources dynamically through MAC/scheduling and routing to trade off the performance benefits of given transmissions against network costs. Because the techniques detailed in each chapter can help readers achieve energy efficiency and reliability in wireless networks, they have the potential to impact a range of industry areas, including wireless communication, wireless sensor networks, and ad hoc networks. The book includes numerous examples, best practices, and models that capture key issues in real-world applications. Along with algorithms and tips for effective design, the book supplies the understanding you will need to achieve high-performing and energy efficient wireless networks with improved service coverage and reliability.