High Performance Computing for Geospatial Applications


Book Description

This volume fills a research gap between the rapid development of High Performance Computing (HPC) approaches and their geospatial applications. With a focus on geospatial applications, the book discusses in detail how researchers apply HPC to tackle their geospatial problems. Based on this focus, the book identifies the opportunities and challenges revolving around geospatial applications of HPC. Readers are introduced to the fundamentals of HPC, and will learn how HPC methods are applied in various specific areas of geospatial study. The book begins by discussing theoretical aspects and methodological uses of HPC within a geospatial context, including parallel algorithms, geospatial data handling, spatial analysis and modeling, and cartography and geovisualization. Then, specific domain applications of HPC are addressed in the contexts of earth science, land use and land cover change, urban studies, transportation studies, and social science. The book will be of interest to scientists and engineers who are interested in applying cutting-edge HPC technologies in their respective fields, as well as students and faculty engaged in geography, environmental science, social science, and computer science.




Big Data Computing for Geospatial Applications


Book Description

The convergence of big data and geospatial computing has brought forth challenges and opportunities to Geographic Information Science with regard to geospatial data management, processing, analysis, modeling, and visualization. This book highlights recent advancements in integrating new computing approaches, spatial methods, and data management strategies to tackle geospatial big data challenges and meanwhile demonstrates opportunities for using big data for geospatial applications. Crucial to the advancements highlighted in this book is the integration of computational thinking and spatial thinking and the transformation of abstract ideas and models to concrete data structures and algorithms.




CyberGIS for Geospatial Discovery and Innovation


Book Description

This book elucidates how cyberGIS (that is, new-generation geographic information science and systems (GIS) based on advanced computing and cyberinfrastructure) transforms computation- and data-intensive geospatial discovery and innovation. It comprehensively addresses opportunities and challenges, roadmaps for research and development, and major progress, trends, and impacts of cyberGIS in the era of big data. The book serves as an authoritative source of information to fill the void of introducing this exciting and growing field. By providing a set of representative applications and science drivers of cyberGIS, this book demonstrates how cyberGIS has been advanced to enable cutting-edge scientific research and innovative geospatial application development. Such cyberGIS advances are contextualized as diverse but interrelated science and technology frontiers. The book also emphasizes several important social dimensions of cyberGIS such as for empowering deliberative civic engagement and enabling collaborative problem solving through structured participation. In sum, this book will be a great resource to students, academics, and geospatial professionals for leaning cutting-edge cyberGIS, geospatial data science, high-performance computing, and related applications and sciences.




High Performance Computing in Remote Sensing


Book Description

Solutions for Time-Critical Remote Sensing Applications The recent use of latest-generation sensors in airborne and satellite platforms is producing a nearly continual stream of high-dimensional data, which, in turn, is creating new processing challenges. To address the computational requirements of time-critical applications, researchers have begun incorporating high performance computing (HPC) models in remote sensing missions. High Performance Computing in Remote Sensing is one of the first volumes to explore state-of-the-art HPC techniques in the context of remote sensing problems. It focuses on the computational complexity of algorithms that are designed for parallel computing and processing. A Diverse Collection of Parallel Computing Techniques and Architectures The book first addresses key computing concepts and developments in remote sensing. It also covers application areas not necessarily related to remote sensing, such as multimedia and video processing. Each subsequent chapter illustrates a specific parallel computing paradigm, including multiprocessor (cluster-based) systems, large-scale and heterogeneous networks of computers, grid computing platforms, and specialized hardware architectures for remotely sensed data analysis and interpretation. An Interdisciplinary Forum to Encourage Novel Ideas The extensive reviews of current and future developments combined with thoughtful perspectives on the potential challenges of adapting HPC paradigms to remote sensing problems will undoubtedly foster collaboration and development among many fields.




Geocomputation with R


Book Description

Geocomputation with R is for people who want to analyze, visualize and model geographic data with open source software. It is based on R, a statistical programming language that has powerful data processing, visualization, and geospatial capabilities. The book equips you with the knowledge and skills to tackle a wide range of issues manifested in geographic data, including those with scientific, societal, and environmental implications. This book will interest people from many backgrounds, especially Geographic Information Systems (GIS) users interested in applying their domain-specific knowledge in a powerful open source language for data science, and R users interested in extending their skills to handle spatial data. The book is divided into three parts: (I) Foundations, aimed at getting you up-to-speed with geographic data in R, (II) extensions, which covers advanced techniques, and (III) applications to real-world problems. The chapters cover progressively more advanced topics, with early chapters providing strong foundations on which the later chapters build. Part I describes the nature of spatial datasets in R and methods for manipulating them. It also covers geographic data import/export and transforming coordinate reference systems. Part II represents methods that build on these foundations. It covers advanced map making (including web mapping), "bridges" to GIS, sharing reproducible code, and how to do cross-validation in the presence of spatial autocorrelation. Part III applies the knowledge gained to tackle real-world problems, including representing and modeling transport systems, finding optimal locations for stores or services, and ecological modeling. Exercises at the end of each chapter give you the skills needed to tackle a range of geospatial problems. Solutions for each chapter and supplementary materials providing extended examples are available at https://geocompr.github.io/geocompkg/articles/.




Introduction to High Performance Computing for Scientists and Engineers


Book Description

Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author




Spatial Cloud Computing


Book Description

An exploration of the benefits of cloud computing in geoscience research and applications as well as future research directions, Spatial Cloud Computing: A Practical Approach discusses the essential elements of cloud computing and their advantages for geoscience. Using practical examples, it details the geoscience requirements of cloud computing, covers general procedures and considerations when migrating geoscience applications onto cloud services, and demonstrates how to deploy different applications. The book discusses how to choose cloud services based on the general cloud computing measurement criteria and cloud computing cost models. The authors examine the readiness of cloud computing to support geoscience applications using open source cloud software solutions and commercial cloud services. They then review future research and developments in data, computation, concurrency, and spatiotemporal intensities of geosciences and how cloud service can be leveraged to meet the challenges. They also introduce research directions from the aspects of technology, vision, and social dimensions. Spatial Cloud Computing: A Practical Approach a common workflow for deploying geoscience applications and provides references to the concepts, technical details, and operational guidelines of cloud computing. These features and more give developers, geoscientists, and IT professionals the information required to make decisions about how to select and deploy cloud services.




Geosimulation


Book Description

Geosimulation is hailed as ‘the next big thing’ in geographic modelling for urban studies. This book presents readers with an overview of this new and innovative field by introducing the spatial modelling environment and describing the latest research and development using cellular automata and multi-agent systems. Extensive case studies and working code is available from an associated website which demonstrate the technicalities of geosimulation, and provide readers with the tools to carry out their own modelling and testing. The first book to treat urban geosimulation explicitly, integrating socio-economic and environmental modelling approaches Provides the reader with a sound theoretical base in the science of geosimulation as well as applied material on the construction of geosimulation models Cross-references to an author-maintained associated website with downloadable working code for readers to apply the models presented in the book Visit the Author's Website for further information on Geosimulation, Geographic Automata Systems and Geographic Automata Software http://www.geosimulationbook.com




Manual of Digital Earth


Book Description

This open access book offers a summary of the development of Digital Earth over the past twenty years. By reviewing the initial vision of Digital Earth, the evolution of that vision, the relevant key technologies, and the role of Digital Earth in helping people respond to global challenges, this publication reveals how and why Digital Earth is becoming vital for acquiring, processing, analysing and mining the rapidly growing volume of global data sets about the Earth. The main aspects of Digital Earth covered here include: Digital Earth platforms, remote sensing and navigation satellites, processing and visualizing geospatial information, geospatial information infrastructures, big data and cloud computing, transformation and zooming, artificial intelligence, Internet of Things, and social media. Moreover, the book covers in detail the multi-layered/multi-faceted roles of Digital Earth in response to sustainable development goals, climate changes, and mitigating disasters, the applications of Digital Earth (such as digital city and digital heritage), the citizen science in support of Digital Earth, the economic value of Digital Earth, and so on. This book also reviews the regional and national development of Digital Earth around the world, and discusses the role and effect of education and ethics. Lastly, it concludes with a summary of the challenges and forecasts the future trends of Digital Earth. By sharing case studies and a broad range of general and scientific insights into the science and technology of Digital Earth, this book offers an essential introduction for an ever-growing international audience.




Fog Computing


Book Description

Summarizes the current state and upcoming trends within the area of fog computing Written by some of the leading experts in the field, Fog Computing: Theory and Practice focuses on the technological aspects of employing fog computing in various application domains, such as smart healthcare, industrial process control and improvement, smart cities, and virtual learning environments. In addition, the Machine-to-Machine (M2M) communication methods for fog computing environments are covered in depth. Presented in two parts—Fog Computing Systems and Architectures, and Fog Computing Techniques and Application—this book covers such important topics as energy efficiency and Quality of Service (QoS) issues, reliability and fault tolerance, load balancing, and scheduling in fog computing systems. It also devotes special attention to emerging trends and the industry needs associated with utilizing the mobile edge computing, Internet of Things (IoT), resource and pricing estimation, and virtualization in the fog environments. Includes chapters on deep learning, mobile edge computing, smart grid, and intelligent transportation systems beyond the theoretical and foundational concepts Explores real-time traffic surveillance from video streams and interoperability of fog computing architectures Presents the latest research on data quality in the IoT, privacy, security, and trust issues in fog computing Fog Computing: Theory and Practice provides a platform for researchers, practitioners, and graduate students from computer science, computer engineering, and various other disciplines to gain a deep understanding of fog computing.