High Performance Thermoplastic Resins and Their Composites


Book Description

Recent developments in high performance thermoplastic resins and their composites are described in this book, and the benefits and limitations of these emerging materials are assessed for aerospace and other applications. Discussions on the performance of neat and continuous fiber reinforced thermoplastic resins in terms of their properties and environmental and chemical resistance are provided.




High-Performance Structural Fibers for Advanced Polymer Matrix Composites


Book Description

Military use of advanced polymer matrix composites (PMC)â€"consisting of a resin matrix reinforced by high-performance carbon or organic fibersâ€"while extensive, accounts for less that 10 percent of the domestic market. Nevertheless, advanced composites are expected to play an even greater role in future military systems, and DOD will continue to require access to reliable sources of affordable, high-performance fibers including commercial materials and manufacturing processes. As a result of these forecasts, DOD requested the NRC to assess the challenges and opportunities associated with advanced PMCs with emphasis on high-performance fibers. This report provides an assessment of fiber technology and industries, a discussion of R&D opportunities for DOD, and recommendations about accelerating technology transition, reducing costs, and improving understanding of design methodology and promising technologies.




High-Performance Structural Fibers for Advanced Polymer Matrix Composites


Book Description

Military use of advanced polymer matrix composites (PMC)â€"consisting of a resin matrix reinforced by high-performance carbon or organic fibersâ€"while extensive, accounts for less that 10 percent of the domestic market. Nevertheless, advanced composites are expected to play an even greater role in future military systems, and DOD will continue to require access to reliable sources of affordable, high-performance fibers including commercial materials and manufacturing processes. As a result of these forecasts, DOD requested the NRC to assess the challenges and opportunities associated with advanced PMCs with emphasis on high-performance fibers. This report provides an assessment of fiber technology and industries, a discussion of R&D opportunities for DOD, and recommendations about accelerating technology transition, reducing costs, and improving understanding of design methodology and promising technologies.




Polymer Matrix Composites and Technology


Book Description

Given such properties as low density and high strength, polymer matrix composites have become a widely used material in the aerospace and other industries. Polymer matrix composites and technology provides a helpful overview of these materials, their processing and performance.After an introductory chapter, part one reviews the main reinforcement and matrix materials used as well as the nature of the interface between them. Part two discusses forming and molding technologies for polymer matrix composites. The final part of the book covers key aspects of performance, including tensile, compression, shear and bending properties as well as impact, fatigue and creep behaviour.Polymer matrix composites and technology provides both students and those in industry with a valuable introduction to and overview of this important class of materials. - Provides a helpful overview of these materials, their processing and performance incorporating naming and classification of composite materials - Reviews the main reinforcement and matrix materials used as well as the nature of the interface between them including damage mechanisms - Discusses forming and molding technologies for polymer matrix composites outlining various techniques and technologies




Analysis and Performance of Fiber Composites


Book Description

Having fully established themselves as workable engineering materials, composite materials are now increasingly commonplace around the world. Serves as both a text and reference guide to the behavior of composite materials in different engineering applications. Revised for this Second Edition, the text includes a general discussion of composites as material, practical aspects of design and performance, and further analysis that will be helpful to those engaged in research on composites. Each chapter closes with references for further reading and a set of problems that will be useful in developing a better understanding of the subject.




Carbon Fibers Filaments and Composites


Book Description

Conventional synthetic materials, like metals, ceramics or glass, are usually isotropic substances, and their suitability for structural applications is achieved by morphological design and combination in the macroscopic scale. However, in modem engineering this is often not acceptable. As an alternative, the use of non-homogeneous, anisotropic materials, with significant stiffness and strength only in the directions these mechanical properties are really needed, can lead to enormous material (and weight) savings. This is the case of multiphase systems called composite materials. In these composites, different material parts are added and arranged geometrically, under clearly designed and controlled conditions. Usually, a structure of fibers provides strength and stiffness and a matrix helds them together, whilst providing the geometric form. Carbon fibers are among the high-performance fibers employed in these advanced structural composites, which are profoundly changing many of today's high technology industries. New research and development challenges in this area include upgrading the manufacturing process of fibers and composites, in order to improve characteristics and reduce costs, and modifying the interfacial properties between fibers and matrix, to guarantee better mechanical properties. The interdisciplinary nature of this "new frontier" is obvious, involving chemistry, materials science, chemical and mechanical engineering. Other topics, which more often are treated separately, are also important for the understanding of the processes of fiber production. Carbon filaments is one such topic, as the study of their mechanisms of nucleation and growth is clearly quite relevant to the production of vapour-grown carbon fibers.




High-Performance Fibres


Book Description

This important new handbook provides comprehensive coverage of how high performance fibres are designed and manufactured and covers their capabilities and applications. The high-modulus, high-tenacity (HM-HT) fibres fall naturally into three groups – polymer fibres such as aramids and polyethylene fibres; carbon fibres such as Kevlar; and inorganic fibres based on glass and ceramic fibres.The books shows how high performance fibres are being increasingly used for a wide range of applications including goetextiles and geomembranes and for construction and civil engineering projects as well as in specialist fibres within composite materials where their ability to fulfil demanding roles makes them an effective choice for the engineer and materials scientist. - Provides a comprehensive overview of how high performance fibres are designed and manufactured and covers their capabilities and applications - Explains how high performance fibres are being increasingly used for a wide range of applications, including geotextiles and geomembranes and construction and civil engineering projects




Polypropylene Handbook


Book Description

This book extensively reviews Polypropylene (PP), the second most widely produced thermoplastic material, having been produced for over 60 years. Its synthesis, processing and application are still accompanied by vigorous R&D developments because the properties of PP are at the borderline between those of commodity and engineering thermoplastics. Readers are introduced to various tacticities and polymorphs of PP, and their effects on structural properties. Further, the book addresses the control of optical properties using nucleants, provides strategies for overcoming the limited cold/impact resistance of PP, examines in detail the effects of recycling, and presents guidelines for the property modification of PPs through foaming, filling and reinforcing with respect to target applications. Special attention is paid to descriptions and models of properties as a function of morphological variables. Last but not least, the book suggests potential practical applications of PP-based systems, especially in the packaging, appliances, building/construction, textile and automotive sectors. Each chapter, written by internationally respected scientists, reflects the current state-of-art in the respective field and offers a vital source of information for students, researchers and engineers interested in the morphology, properties, testing and modeling of PP and PP-based systems. The content is indispensable to the appropriate application of PPs and related composites.




Carbon and High Performance Fibres Directory and Databook


Book Description

PURPOSE Since the publication of the previous, Fifth Edition of this volume in 1991, the 'advanced' sector of the world-wide composites industry in particular, has seen many company changes in reorganisation, realignment and ownership. These changes have affected the raw material suppliers as well as those moulding the finished product. Changes in the demands of the aerospace, defence and allied industries have largely been the cause. That situation has been particularly true for those manufacturing and distributing reinforcement fibres and fabrics, necessitating this comprehensive Sixth Edition revision. However publication is also timely, because a major and important consequence is the better consideration now being given by the 'commercial' market sector, to the use - and advantages - of some of the carbon, aramid and other high-performance reinforcements, described within these pages. Although supplying at a much lower finished component cost than applies for the aerospace and defence markets, the total tonnage output answering the typically lower-performance requirements of the 'commercial' sector, is higher by many factors. Overall therefore, the summation of output tonnage and price, will continue to favour the latter. Nevertheless this 'commercial' market sector must, albeit slowly, ultimately benefit to a marked degree from an increasing technology spin-off, promoted to an extent somewhat earlier than might otherwise have been expected, by the noted changes in market place demand.




Hybrid Fiber Composites


Book Description

Fiber-reinforced composites are exceptionally versatile materials whose properties can be tuned to exhibit a variety of favorable properties such as high tensile strength and resistance against wear or chemical and thermal influences. Consequently, these materials are widely used in various industrial fields such as the aircraft, marine, and automobile industry. After an overview of the general structures and properties of hybrid fiber composites, the book focuses on the manufacturing and processing of these materials and their mechanical performance, including the elucidation of failure mechanisms. A comprehensive chapter on the modeling of hybrid fiber composites from micromechanical properties to macro-scale material behavior is followed by a review of applications of these materials in structural engineering, packaging, and the automotive and aerospace industries.